

C++ in Embedded Systems

A practical transition from C to modern C++

Amar Mahmutbegović

C++ in Embedded Systems
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing
the language and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s
important to note that the content itself has been crafted by the author and edited by a professional
publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author nor Packt Publishing or its dealers and distributors will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Tanisha Mehrotra

Project Manager: Sandip Tadge

Content Engineer: Rashi Dubey

Technical Editor: Tejas Mhasvekar

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Proofreader: Rashi Dubey

Production Designer: Shankar Kalbhor
Growth Leads: Namita Velgekar and Lee Booth

First published: July 2025

Production reference: 1060625

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83588-114-9

www.packtpub.com

http://www.packtpub.com

To my wife, Ferisa, and to my parents, Safet and Enisa, for their love and support.

– Amar

Foreword

In this book, C++ in Embedded Systems, Amar Mahmutbegović shows you how to apply modern

C++ for embedded systems. These systems must often run in constrained environments, with

limited CPU power, memory, and electrical power, and must satisfy strict requirements for timing

and reliability. They may need to avoid programming practices such as recursion and dynamic

memory management.

C has long been the language of choice for embedded systems. However, C++ offers more ex-

pressive abstractions and design paradigms, better type safety, and better resource and memory

safety, while retaining the low-level hardware access of C. You may have been reluctant to use

C++ because of past concerns about its suitability for embedded systems. The language and its

compilers have evolved over the decades to eliminate those concerns. Better type- and memo-

ry-safety mean the compiler finds more errors at compile time without runtime overhead.

Amar takes you through the features of modern C++ (through C++23) that achieve these improve-

ments. These include techniques such as static and dynamic binding, dynamic and compile-time

polymorphism, templates and metaprogramming, resource management, and compile-time

computation, as well as patterns and principles that support robust design. He provides simple,

practical examples written from the perspective of an experienced embedded systems developer.

He shows you how to use tools such as Compiler Explorer and Renode to examine the generated

machine code and simulate embedded targets to convince yourself that these methods deliver

on their promises.

The methods you learn here will help you build more reliable, flexible, maintainable, reusable,

adaptable, and efficient embedded systems.

Steve Branam

Senior Software Development Engineer, Amazon Robotics

Contributors

About the author
Amar Mahmutbegović is the co-founder and head of engineering at Semblie, where he leads

the utilization of modern C++ for firmware development. His expertise extends to working on

BLE consumer devices and medical devices, delivering sophisticated solutions for a wide range

of clients, including start-ups. Amar’s dedication to innovation helps bring electronic product

ideas to the world. Amar actively shares C++ benefits in the embedded community via blogs

and LinkedIn. He also mentors young engineers, enhancing their skills in modern development

practices. His work aims to make embedded systems more accessible, maintainable, and scalable,

bridging the gap between traditional methods and modern efficiencies for developers worldwide.

My deepest thanks go to my wife, friend, and the love of my life, Ferisa Živčić, for putting up with me over the

past year. Writing a book while working a full-time job took up much of my free time and energy, and I’m

endlessly grateful for her patience, understanding, and support.

I am grateful to have the best parents, Enisa and Safet. They taught me the importance of learning and hard

work and guided me with strong moral values.

Big thanks to all my family, friends, and colleagues who supported me and helped in any way.

About the reviewers
Dirk Jan ten Kate is a senior embedded software engineer with over 15 years of experience

in embedded systems, specializing in automotive and gas measuring industries. At his current

employer, he developed a modular, hardware-independent firmware platform that forms the

foundation for all new products. Dirk Jan is passionate about software quality, driving the adop-

tion of test-driven development and continuous integration practices. His expertise spans system

design, microcontroller development, RTOS, CAN, BLE, high-level communication protocols,

low-level serial protocols, and programming in C and C++.

Rugved Hattekar is a skilled engineer with a strong background in embedded systems, robotics,

and autonomous vehicle technology. He has developed software for safety-critical systems using

C/C++, with a focus on hardware-software integration, sensor fusion, and real-time performance.

At GPR, Inc., he contributed to vehicle localization and mapping systems using ground-penetrat-

ing radar. At Luminar Technologies, he works as a senior Lidar software developer specializing in

embedded digital signal processing for Lidar sensors. Rugved brings deep technical insight into

embedded C++ applications that drive advanced sensing and autonomous vehicle technologies.

Jacob Beningo helps embedded teams modernize their architecture, development processes,

and skills to deliver high-quality, real-time systems. With two decades of experience and over

100 projects completed, he provides expert training, consulting, and coaching through Beningo

Embedded Group and the Embedded Software Academy.

Table of Contents

Preface � xvii

Part I: Introduction to C++ in Embedded Development � 1

Chapter 1: Debunking Common Myths about C++ � 3

Technical requirements ��� 4

A short history of C++ ��� 4

C with Classes �� 6

Modern C++ • 6

Generic types • 8

Ring buffer in C • 8

Ring buffer in C++ • 15

constexpr • 17

Bloat and runtime overhead ��� 21

Constructors and destructors • 21

Optimization • 26

Templates • 28

RTTI and exceptions • 30

Summary ��� 33

Join our community on Discord ��� 34

Table of Contentsviii

Chapter 2: Challenges in Embedded Systems with Limited Resources � 35

Technical requirements ��� 36

Safety-critical and hard real-time embedded systems ��� 36

Airbag control unit and real-time requirements • 36

Measuring firmware performance and non-determinism • 39

A-B timing and real-time execution • 39

Sotware instrumentation with GCC • 40

Determinism vs. Non-Determinism in Firmware • 41

Dynamic memory management ��� 42

Memory fragmentation • 43

Safety-critical guidelines for dynamic memory management in C++ • 44

Dynamic memory management in the C++ standard library • 45

Disabling unwanted C++ features ��� 51

Summary ��� 53

Chapter 3: Embedded C++ Ecosystem � 55

Technical requirements ��� 56

Compilers and development environments ��� 56

Arm Keil MDK and Arm Compiler for Embedded • 58

IAR C/C++ Compiler and IAR Embedded Workbench for Arm • 59

Vendor-supported IDEs and GCC • 60

GCC • 60

Compiler Explorer • 62

Static analyzers �� 64

Unit testing �� 68

Profiling ��� 73

Summary ��� 75

Join our community on Discord ��� 75

Table of Contents ix

Chapter 4: Setting Up the Development Environment for a
C++ Embedded Project � 77

Technical requirements ��� 78

Requirements for a modern software development environment �������������������������������������� 78

Compiler • 78

Build automation • 79

Simulator • 80

Code editor • 80

Containerized development environment ��� 81

Building the Hello, World! program using CMake • 83

Building a firmware using CMake • 86

Containerized development environment and Visual Studio Code ������������������������������������ 87

Summary ��� 91

Part II: C++ Fundamentals � 93

Chapter 5: Classes – Building Blocks of C++ Applications � 95

Technical requirements ��� 96

Encapsulation �� 96

Setters and getters • 98

Static methods • 99

Structs • 100

Storage duration and initialization ��� 101

Non-static member initialization • 102

Default member initializers • 102

Constructors and member initializer lists • 102

Converting constructors and explicit specifiers • 104

Static member initialization • 106

Inheritance and dynamic polymorphism ��� 108

Virtual functions • 110

Virtual function implementation • 111

Table of Contentsx

UML class diagrams • 113

Dynamic polymorphism • 114

Summary �� 116

Join our community on Discord �� 116

Chapter 6: Beyond Classes – Fundamental C++ Concepts � 117

Technical requirements �� 117

Namespaces �� 118

Unnamed namespaces • 120

Nested namespaces • 120

Function overloading �� 121

Interoperability with C ��� 123

External and Language Linkage in C++ • 124

C standard library in C++ • 124

References ��� 125

Value categories • 125

Lvalue references • 127

Rvalue references • 127

Standard library containers and algorithms ��� 129

Array • 129

Container adaptors • 131

Algorithms • 132

std::copy and std::copy_if • 132

std::sort • 133

Summary �� 134

Chapter 7: Strengthening Firmware – Practical C++
Error Handling Methods � 135

Technical requirements �� 136

Error codes and asserts ��� 136

Global error handlers • 139

Asserts • 141

Table of Contents xi

Exceptions �� 145

std:: optional and std::expected �� 149

Summary �� 152

Join our community on Discord �� 152

Part III: C++ Advanced Concepts � 153

Chapter 8: Building Generic and Reusable Code with Templates � 155

Technical requirements �� 156

Template basics �� 156

Making a call to the template function • 157

Template specialization • 159

Template metaprogramming ��� 160

Concepts �� 164

Compile-time polymorphism �� 166

Using Class Templates for Compile-Time Polymorphism • 166

Curiously recurring template pattern (CRTP) • 168

Summary ��� 170

Chapter 9: Improving Type-Safety with Strong Types � 171

Technical requirements �� 172

Implicit conversion ��� 172

Numeric promotions and conversions • 174

Array-to-pointer conversion • 178

Function-to-pointer conversion • 180

Explicit conversion ��� 181

const_cast • 181

static_cast • 182

dynamic_cast • 185

Table of Contentsxii

reinterpret_cast • 187

Type punning • 189

Type punning – the correct way • 191

Strong types �� 192

Summary ��� 198

Join our community on Discord ��� 198

Chapter 10: Writing Expressive Code with Lambdas � 199

Technical requirements �� 200

Lambda expression basics ��� 200

Storing lambdas using std::function �� 203

The command pattern • 206

GPIO interrupt manager • 207

std::function and dynamic memory allocation ��� 212

Summary �� 214

Chapter 11: Compile-Time Computation � 215

Technical requirements �� 215

Templates ��� 216

constexpr specifier ��� 218

Example 1 – MAC address parser • 220

Example 2 – Generating a lookup table • 223

Generating a lookup table • 227

Writing a signal representing the Steinhart-Hart equation • 230

Analyzing the usage example firmware code • 234

consteval specifier ��� 235

Summary ��� 237

Join our community on Discord ��� 237

Table of Contents xiii

Part IV: Applying C++ to Solving Embedded Domain
Problems � 239

Chapter 12: Writing C++ HAL � 241

Technical requirements ��� 242

Memory-mapped peripherals �� 242

CMSIS memory-mapped peripherals • 242

Memory-mapped peripherals in C++ • 244

Type-safe memory-mapped peripherals in C++ • 247

Modeling HSION and HSITRIM bit fields from the RCC register • 249

Generic versions of hsion and hsi_trim • 252

Timers �� 253

Summary ��� 258

Chapter 13: Working with C Libraries � 259

Technical requirements ��� 259

Using C HAL in C++ projects ��� 260

UART interface for flexible software design • 260

The UART interface in the Adapter pattern • 264

Introducing static classes ��� 265

Using RAII for wrapping the littlefs C library ��� 267

LittleFS – a filesystem for microcontrollers • 268

Introducing an RAII-based C++ wrapper • 271

Cleaner file management with RAII • 274

Summary ��� 275

Join our community on Discord ��� 275

Table of Contentsxiv

Chapter 14: Enhancing Super-Loop with Sequencer � 277

Technical requirements ��� 278

Super-loop and motivation for a sequencer ��� 278

Designing a sequencer ��� 280

Storing a callable ��� 283

Implementing a sequencer �� 287

Summary ��� 290

Chapter 15: Practical Patterns – Building a Temperature Publisher � 291

Technical requirements ��� 292

The Observer pattern ��� 292

Runtime implementation �� 294

Compile-time implementation �� 297

Leveraging variadic templates • 298

Improving the compile-time implementation • 302

Summary ��� 304

Join our community on Discord ��� 304

Chapter 16: Designing Scalable Finite State Machines � 305

Technical requirements ��� 306

FSM – a simple implementation �� 306

Describing states and events • 308

Tracking current state and handling events – the FSM class • 309

Using the ble_fsm class • 311

Analyzing the output • 312

FSM – implementation using the State pattern ��� 313

Understanding state class interfaces • 313

Refactoring the ble_fsm class • 316

Implementing the State pattern • 317

State design pattern • 319

State pattern implementation using tag dispatching ��� 320

Boost SML �� 322

Table of Contents xv

Chapter 17: Libraries and Frameworks � 327

Technical requirements ��� 328

Standard library ��� 328

Freestanding and hosted implementations in GCC • 328

Numeric and math • 329

<cstdint> • 329

<limits> • 329

<cmath> • 330

Containers and algorithms • 330

std::array • 330

std:: priority_queue • 330

std:: span • 330

Iterators • 331

Algorithms • 332

Template metaprogramming • 332

Parts of the standard library to avoid in embedded applications • 333

Embedded template library ��� 333

Fixed-size containers • 334

Storing a callable with etl::delegate • 334

Other utilities provided by ETL • 334

Pigweed ��� 335

Pigweed’s Sense tutorial • 335

RPC and Protocol Buffers • 340

Compile-time Initialization and Build ��� 343

Using CIB in a temperature publisher example • 344

Extending the temperature publisher example • 346

Summary ��� 350

Table of Contentsxvi

Chapter 18: Cross-Platform Development � 351

Technical requirements �� 351

Importance of writing portable code ��� 352

SOLID design principles ��� 352

Single Responsibility Principle (SRP) • 356

Open/Closed Principle (OCP) • 357

The Liskov Substitution Principle (LSP) • 357

The Interface Segregation Principle (ISP) • 357

The Dependency Inversion Principle (DIP) • 357

Testability �� 358

Summary �� 361

Join our community on Discord ��� 362

Why subscribe? �� 363

Other Books You May Enjoy � 365

Index � 369

Preface

C++ is a general-purpose, multi-paradigm programming language, supporting procedural, ob-

ject-oriented, and, to some extent, functional programming paradigms. It started out as C with

classes, but over time it transformed into a modern language that enables writing highly expres-

sive code without sacrificing performance. Despite this, C remains the dominant language in

embedded development, primarily due to its simplicity and gentler learning curve.

However, the simplicity of C often makes writing complex systems overly verbose, increasing the

cognitive burden on developers and making code more error-prone. This is where C++ excels. With

features such as generic programming, runtime and compile-time polymorphism, compile-time

computation, and enhanced type and memory safety, it is a superb choice for embedded system

development.

Myths about C++, such as code bloat and runtime overhead, are still widespread. This book begins

by debunking these misconceptions and guiding you through C++ fundamentals. It then shifts

focus to more advanced modern C++ concepts, applying them to solve real-world problems in

embedded development.

The goal of this book is to show you how modern C++ can be effectively used in embedded sys-

tems through carefully selected examples and by applying good software development practices.

Who this book is for
This book is for embedded developers who mainly use C in their daily jobs and would like to

discover modern C++. Some familiarity with C++ is expected but not necessary, as the book also

covers C++ basics.

What this book covers
Chapter 1, Debunking Common Myths About C++, explores widespread misconceptions about C++

and systematically debunks them. You will also gain insight into the history of C++ and the ze-

ro-overhead principle.

Prefacexviii

Chapter 2, Challenges in Embedded Systems with Limited Resources, examines the design challeng-

es faced in resource-constrained embedded systems, with a focus on profiling techniques and

memory management. It also shows how to avoid potentially problematic language features

such as exceptions and RTTI.

Chapter 3, Embedded C++ Ecosystem, reviews the tools available for C++ development in the em-

bedded domain, including toolchains, static analyzers, profiling tools, and testing frameworks.

Chapter 4, Setting Up the Development Environment for a C++ Embedded Project, walks you through

setting up a modern development environment for C++ embedded projects, including using a

simulator to test your code in a virtual setting.

Chapter 5, Classes – Building Blocks of C++ Applications, guides you through understanding classes

in C++, including storage duration and initialization and inheritance and dynamic polymorphism.

Chapter 6, Beyond Classes – Fundamental C++ Concepts, covers fundamental C++ features such as

namespaces and function overloading. It also discusses interoperability with C and introduces

standard library containers and algorithms.

Chapter 7, Strengthening Firmware – Practical C++ Error Handling Methods, goes through various

error handling techniques in C++, including error codes, asserts, and global handlers. It also

explains the mechanics of exceptions and how they work.

Chapter 8, Building Generic and Reusable Code with Templates, goes through templates and concepts.

It also provides an introduction to template metaprogramming and compile-time polymorphism.

Chapter 9, Improving Type-Safety with Strong Types, discusses implicit and explicit type conversions

in C++ and introduces the concept of strong types. A practical example from an embedded library

demonstrates how to improve type safety.

Chapter 10, Writing Expressive Code with Lambdas, introduces lambdas and shows you how to use

them within a command design pattern to implement an expressive interrupt manager.

Chapter 11, Compile-Time Computation, explores C++’s compile-time computation capabilities and

demonstrates how to use them to build a signal generator library that generates lookup tables

at compile time.

Chapter 12, Writing C++ HAL, demonstrates the implementation of HAL in C++, using tem-

plate-metaprogramming to ensure type-safety.

Preface xix

Chapter 13, Working with C Libraries, shows how to effectively use C libraries in C++ projects. It

demonstrates the RAII principle in an example of using a filesystem C library.

Chapter 14, Enhancing Super-Loop with Sequencer, shows how to improve simple super-loop-based

designs using a sequencer. It also introduces the Embedded Template Library (ETL) and its

container class templates with fixed sizes known at compile time.

Chapter 15, Practical Patterns – Building a Temperature Publisher, guides you through the Observer

design pattern and demonstrates how to apply it in systems such as thermostats and HVAC

controllers.

Chapter 16, Designing Scalable Finite State Machines, explores different ways to implement finite

state machines. It begins with a basic enum-switch approach, introduces the State design pattern,

and then presents the Boost.SML library.

Chapter 17, Libraries and Frameworks, highlights parts of the C++ Standard Template Library that

are useful for firmware development in constrained systems. It also features the CIB and Pigweed

libraries.

Chapter 18, Cross-Platform Development, discusses the importance of good software design for

achieving portability and testability in embedded software.

To get the most out of this book
Many examples in the book can be run in Compiler Explorer (https://godbolt.org/). Use it to

observe the assembly output of the compiler. Experiment with the examples, tweak them, and

compile them with different optimization levels and compiler flags to understand how those

changes affect the compiler output.

Most of the examples can also be run in the Renode simulator. The book is accompanied by a

Docker container, which includes the GCC toolchain and the Renode simulator, enabling you to

run the code in an embedded target simulation.

Software/hardware covered in the book Operating system requirements

Docker Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or

access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

https://godbolt.org/

Prefacexx

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems. We also have other code bundles from our rich catalog of books and

videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781835881149.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The PT100

class is also a TemperatureSensor class, and the TemperatureController class has a member

(object) of TemperatureSensor and a PidController class.”

A block of code is set as follows:

#define N 20

int buffer[N];

for(int i = 0; i < N; i ++) {

 printf("%d ", buffer[i]);

}

Any command-line input or output is written as follows:

The output of this simple program might be surprising:

resistance = 3.00

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Now, we need to add

the Google Test library by clicking on the Libraries button in the execution pane.”

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems
https://github.com/PacktPublishing
https://packt.link/gbp/9781835881149

Preface xxi

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/

Prefacexxii

Share your thoughts
Once you’ve read C++ in Embedded Systems, we’d love to hear your thoughts! Please click here

to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

Preface xxiii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835881149

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835881149

Part 1
Introduction to C++ in

Embedded Development
The book begins by exploring common myths about C++ and debunking them. You will gain

insight into the history of C++ and develop an understanding of the zero-overhead principle. In

addition, you will examine design challenges in embedded systems and learn how to address

them using C++. This part also covers the embedded C++ ecosystem and guides you through

setting up the development environment for a C++ embedded project, including configuring the

toolchain, build system, and simulator.

This part has the following chapters:

•	 Chapter 1, Debunking Common Myths about C++

•	 Chapter 2, Challenges in Embedded Systems with Limited Resources

•	 Chapter 3, Embedded C++ Ecosystem

•	 Chapter 4, Setting Up the Development Environment for a C++ Embedded Project

1
Debunking Common Myths
about C++

Writing software for microcontrollers and embedded systems is challenging. In order to get the

most out of resource-constrained systems, embedded developers need to have a good knowledge

of platform architecture. They need to be aware of available resources, including processor capa-

bilities, available memory, and peripherals. The need to have direct access to hardware through

memory-mapped peripherals has made C the language of choice for embedded systems for half

a century.

The goal of any programming language is to carry out the process of converting application-spe-

cific abstractions into code that can be transformed into machine code. For instance, Common

Business-Oriented Language (COBOL) is used for banking applications, and Fortran is used for

scientific research and heavy mathematic calculations. C is, on the other hand, a general-pur-

pose programming language commonly used in operating systems (OSs) and embedded system

applications.

C is a language with a simple and easy-to-learn syntax. Having a simple syntax means it is inca-

pable of expressing complex ideas. C allows for complex operations but requires more explicit

and detailed code to manage complexity, compared to higher-level languages that abstract these

details away.

Debunking Common Myths about C++4

In the late 1970s, high-level languages couldn’t meet the performance of C. This motivated Danish

computer scientist Bjarne Stroustrup to start working on C with Classes, a predecessor to C++.

Nowadays, C++ is a multiparadigm language designed with performance in mind. The origin of

C++ is still a source of some myths, which often causes hesitation in adopting it for embedded

systems programming. This chapter will introduce you to those myths and debunk them. The

following topics will be covered in this chapter:

•	 A short history of C++

•	 C with Classes

•	 Bloat and runtime overhead

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. The examples from this chapter are available on GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01).

A short history of C++
In the mid-60s, the simulation programming language SIMULA introduced classes and objects

to the world of software development. Classes are abstractions that allow us to represent re-

al-world concepts in programming in a concise way, making the code more human-readable.

In embedded development, UART, SPI, TemperatureSensor, PidController, and Temperatu-

reController are some concepts that can be implemented as classes. SIMULA also introduced

hierarchical relationships between classes. For example, PT100 class is also a TemperatureSensor

class, and TemperatureController class has a member instance (object) of TemperatureSensor

and a PidController. This became known as object-oriented programming (OOP).

In reflecting on the evolution of programming languages, Bjarne Stroustrup, the creator of C++,

shared his approach to designing C++. Stroustrup aimed to bridge the gap between high-level

abstractions and low-level efficiency. He said the following:

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01

Chapter 1 5

Originally started as C with Classes by Bjarne Stroustrup, C++ transformed into a modern pro-

gramming language that still provides direct access to hardware and memory-mapped peripherals.

Using powerful abstractions makes writing expressive and highly modular code possible in C++.

C++ is a general-purpose, multiparadigm language supporting procedural, object-oriented, and,

to some extent, functional programming paradigms.

While C is still the language of choice for embedded development, accounting for up to 60% of

embedded projects, the adoption of C++ has grown steadily. With an estimated usage of 20-30%

in the embedded development field, C++ offers classes, improved type safety, and compile-time

computation, among other features.

Despite the features that C++ offers, C is still dominant in embedded programming. There are

many reasons for this, and this chapter will address some of them. C++ is a more complex lan-

guage than C, making it harder for beginner developers. C is easier to learn and makes it possible

to involve beginner developers in a project faster.

The simplicity of C is good as it allows beginner developers to start contributing to projects faster,

but it also makes writing complex logic too verbose. This usually results in a larger code base

due to a lack of expressiveness. This is where C++ steps in with higher abstractions, which, if

embraced, make code easier to read and comprehend.

The other reasons why C++ is not more widely adopted are related to myths about C++. It is still

believed that C++ is just “C with classes,” that using C++ is absolutely unacceptable for safety-crit-

ical systems due to dynamic memory allocation in the standard library, or that it produces bloat

code and adds space and time overhead. This chapter will address some of the most common

myths about C++ in the context of embedded development. Let’s debunk these myths and shine

a new light on C++ in embedded systems!

 My idea was very simple. To take ideas from SIMULA for general abstractions for

the benefits of humans representing things, so humans could get it, with low-level

stuff, which at that time the best language for that was C, which was done at Bell

Labs by Dennis Ritchie. And take those two ideas and bring them together so that

you could do high-level abstraction, but efficiently enough and close enough to

hardware, for really demanding computing tasks

Debunking Common Myths about C++6

C with Classes
Historically speaking, C++ started as C with Classes. The first C++ compiler, Cfront, converted

C++ to C, but that was a long time ago. Over time, C and C++ evolved separately and are now

defined by separate language standards. C has maintained its simplicity, while C++ has become

a modern language that enables abstract solutions for problems without sacrificing performance

levels. But C++ is still sometimes called C with Classes, which implies that there is no added value

in C++ except the classes.

The C++11 standard was released in 2011, and it is the second major version of C++. It is packed

with features that modernize the language, such as range-based loops, lambdas, and constexpr.

Subsequent releases, C++14, C++17, C++20, and C++23, kept modernizing the language and in-

troducing features that make C with Classes merely a distant predecessor of modern C++.

Modern C++
To demonstrate that C++ is not just C with Classes, let’s explore a couple of short C code examples

and their modern C++ equivalents. Let’s start with a simple example of printing elements from

an integer buffer:

#define N 20

int buffer[N];

for(int i = 0; i < N; i ++) {

 printf("%d ", buffer[i]);

}

The preceding C code can be translated into the following C++ code:

std::array<int, 20> buffer;

for(const auto& element : buffer) {

 printf("%d ", element);

}

The first thing we notice is that the C++ version is shorter. It has fewer words, and it’s closer to

English than the C code. It is easier to read. Now, if you come from a C background and have not

been exposed to higher-level languages, the first version may look easier to read, but let’s compare

them. The first thing we notice is that the C code has defined the constant N, which determines

the size of buffer. This constant is used to define buffer and as a boundary for the for loop.

Chapter 1 7

Range-based loops, introduced in C++11, remove the cognitive burden of using the size of the

container in the loop stop condition. The size information is already contained in the std::array

container, which is utilized by the range-based loop to iterate through the array effortlessly. Also,

there is no indexing of the buffer, as elements are accessed using constant reference, ensuring

that the elements are not modified inside the loop.

Let’s look at some simple C code that copies all elements from the array_a integer to array_b if

smaller than 10:

int w_idx = 0;

for(int i = 0; i < sizeof(array_a)/sizeof(int); i++) {

 if(array_a[i] < 10) {

 array_b[w_idx++] = array_a[i];

 }

}

Here is the C++ code with the same functionality:

auto less_than_10 = [](auto x) -> bool {

 return x < 10;

};

std::copy_if(std::begin(array_a), std::end(array_a), std::begin(array_b),
less_than_10);

Instead of manually iterating through array_a and copying elements to array_b only if they

exceed 10, we can use the copy_if function from C++’s standard template library. The first two

arguments for std::copy_if are iterators that define the range of elements to consider in array_a:

the first iterator points to the beginning of the array, and the second iterator points to the position

just beyond the last element. The third argument is the iterator pointing to the start of array_b,

and the fourth is the less_than_10 lambda expression.

A lambda expression is an anonymous function object that can be declared at a location where

it’s invoked or passed as an argument to a function. Please note that lambdas will be covered

in more detail in Chapter 10. In the case of std::copy_if, the less_than_10 lambda is used to

determine whether elements from array_a are to be copied to array_b. We could also define a

standalone less_than_10 function that accepts an integer and returns a Boolean if it is larger

than 10, but using a lambda, we can write this functionality close to the place where we pass it

to an algorithm, which makes code more compact and expressive.

Debunking Common Myths about C++8

Generic types
Previous examples used the std::array standard library container. It is a class template that

wraps a C-style array along with its size information. Please note that templates will be covered

in more detail in Chapter 8. When you use std::array with a specific underlying type and size,

the compiler defines a new type in the process of instantiation.

std::array<int, 10> creates a container type that has an underlying C-style array of integers

with a size of 10. The std::array<int, 20> is a container type that has an underlying C-style

array of integers with a size of 20. The std::array<int, 10> and std::array<int, 20> are

different types. Both have the same underlying type, but a different size.

std::array<float, 10> would result in a third type, as it differs from std::array<int, 10> by

the underlying type. Using different parameters yields different types. Template types are generic

types that become concrete only upon instantiation.

To better understand generic types and appreciate them, let’s examine the implementation of a

ring buffer in C and compare it with a template-based solution in C++.

Ring buffer in C
A ring or circular buffer is a commonly used data structure in embedded programming. It is

commonly implemented as a set of functions around an array with write and read indexes used

to access elements of the array. The count variable is used for array space management. The

interface consists of push and pop functions, which are explained here:

•	 A push function is used to store elements in a ring buffer. On every push, a data element is

stored in the array, and the write index is incremented. If the write index becomes equal

to the number of elements in the data array, it is reset to 0.

•	 A pop function is used to retrieve an element from a ring buffer. On every pop, if the

underlying array is not empty, we return an element of the array indexed with the read

index. We increment the read index.

On every push, we increment the count variable and decrement it on pop. If the count becomes

equal to the size of the data array, we need to move the read index forward.

Let us define the implementation requirements of the ring buffer we want to implement in our

C module:

•	 It should not use dynamic memory allocation

•	 When the buffer is full, we will overwrite the oldest element

Chapter 1 9

•	 Provide push and pop functions for storing data in the buffer and retrieving it

•	 Integers will be stored in the ring buffer

Here is a simple solution for the preceding requirements in C:

#include <stdio.h>

#define BUFFER_SIZE 5

typedef struct {

 int arr[BUFFER_SIZE]; // Array to store int values directly

 size_t write_idx; // Index of the next element to write (push)

 size_t read_idx; // Index of the next element to read (pop)

 size_t count; // Number of elements in the buffer

} int_ring_buffer;

void int_ring_buffer_init(int_ring_buffer *rb) {

 rb->write_idx = 0;

 rb->read_idx = 0;

 rb->count = 0;

}

void int_ring_buffer_push(int_ring_buffer *rb, int value) {

 rb->arr[rb->write_idx] = value;

 rb->write_idx = (rb->write_idx + 1) % BUFFER_SIZE;

 if (rb->count < BUFFER_SIZE) {

 rb->count++;

 } else {

 // Buffer is full, move read_idx forward

 rb->read_idx = (rb->read_idx + 1) % BUFFER_SIZE;

 }

}

int int_ring_buffer_pop(int_ring_buffer *rb) {

 if (rb->count == 0) {

 return 0;

 }

 int value = rb->arr[rb->read_idx];

Debunking Common Myths about C++10

 rb->read_idx = (rb->read_idx + 1) % BUFFER_SIZE;

 rb->count--;

 return value;

}

int main() {

 int_ring_buffer rb;

 int_ring_buffer_init(&rb);

 for (int i = 0; i < 10; i++) {

 int_ring_buffer_push(&rb, i);

 }

 while (rb.count > 0) {

 int value = int_ring_buffer_pop(&rb);

 printf("%d\n", value);

 }

 return 0;

}

We are using a for loop to initialize the buffer. As the buffer size is 5, values from 5 to 9 will be

stored in the buffer as the ring buffer overwrites the existing data. Now, what if we want to store

floats in our ring buffer, chars, or a user-defined data structure? We could implement the same

logic for different types and create a new set of data structures and functions called float_ring_

buffer or char_ring_buffer. Can we make a solution that could store different data types and

use the same functions?

We could use an unsigned char array as storage for different data types and use a void pointer

to pass different data types to push and pop functions. The only thing that’s missing is knowing

the size of the data type, and we can address that by adding a size_t elem_size member to the

ring_buffer structure:

#include <stdio.h>

#include <string.h>

#define BUFFER_SIZE 20 // Total bytes available in the buffer

typedef struct {

Chapter 1 11

 unsigned char data[BUFFER_SIZE]; // Array to store byte values

 size_t write_idx; // Index of the next byte to write

 size_t read_idx; // Index of the next byte to read

 size_t count; // Number of bytes currently used in the buffer

 size_t elem_size; // Size of each element in bytes

} ring_buffer;

void ring_buffer_init(ring_buffer *rb, size_t elem_size) {

 rb->write_idx = 0;

 rb->read_idx = 0;

 rb->count = 0;

 rb->elem_size = elem_size;

}

void ring_buffer_push(ring_buffer *rb, void *value) {

 if (rb->count + rb->elem_size <= BUFFER_SIZE) {

 rb->count += rb->elem_size;

 } else {

 rb->read_idx = (rb->read_idx + rb->elem_size) % BUFFER_SIZE;

 }

 memcpy(&rb->data[rb->write_idx], value, rb->elem_size);

 rb->write_idx = (rb->write_idx + rb->elem_size) % BUFFER_SIZE;

}

int ring_buffer_pop(ring_buffer *rb, void *value) {

 if (rb->count < rb->elem_size) {

 // Not enough data to pop

 return 0;

 }

 memcpy(value, &rb->data[rb->read_idx], rb->elem_size);

 rb->read_idx = (rb->read_idx + rb->elem_size) % BUFFER_SIZE;

 rb->count -= rb->elem_size;

 return 1; // Success

}

int main() {

Debunking Common Myths about C++12

 ring_buffer rb;

 ring_buffer_init(&rb, sizeof(int)); // Initialize buffer for int values

 for (int i = 0; i < 10; i++) {

 int val = i;

 ring_buffer_push(&rb, &val);

 }

 int pop_value;

 while (ring_buffer_pop(&rb, &pop_value)) {

 printf("%d\n", pop_value);

 }

 return 0;

}

This ring buffer solution can be used to store different data types. As we avoid using dynamic

memory allocation and the data buffer size was determined at compile time, we are not flexible

when it comes to defining the size of the memory needed for different instances of the ring buffer.

Another problem we have is type safety. We can easily call ring_buffer_push with a pointer to a

float and ring_buffer_pop with a pointer to an integer. The compiler can’t address this concern,

and the possibility of a catastrophe is real. Also, by using a void pointer, we added a layer of in-

direction as we have to rely on memory to retrieve data from the data buffer.

Can we address type-safety concerns and make it possible to define the size of the ring buffer in

C? We can use the token-pasting (##) operator to create a set of functions for different types and

sizes using macros. Let’s quickly go through a simple example of using the ## operator before

jumping into ring buffer implementation using this technique:

#include <stdio.h>

// Macro to define a function for summing two numbers

#define DEFINE_SUM_FUNCTION(TYPE) \

TYPE sum_##TYPE(TYPE a, TYPE b) { \

 return a + b; \

}

// Define sum functions for int and float

DEFINE_SUM_FUNCTION(int)

Chapter 1 13

DEFINE_SUM_FUNCTION(float)

int main() {

 int result_int = sum_int(5, 3);

 printf("Sum of integers: %d\n", result_int);

 float result_float = sum_float(3.5f, 2.5f);

 printf("Sum of floats: %.2f\n", result_float);

 return 0;

}

DEFINE_SUM_FUNCTION(int) will create a sum_int function that accepts and returns integers. If

we call the DEFINE_SUM_FUNCTION macro with float, it will result in creating sum_float. Now

that we have a good understanding of the token-pasting operator, let’s continue with ring buffer

implementation:

#include <stdio.h>

#include <string.h>

// Macro to declare ring buffer type and functions for a specific type and
size

#define DECLARE_RING_BUFFER(TYPE, SIZE) \

typedef struct { \

 TYPE data[SIZE]; \

 size_t write_idx; \

 size_t read_idx; \

 size_t count; \

} ring_buffer_##TYPE##_##SIZE; \

void ring_buffer_init_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb) { \

 rb->write_idx = 0; \

 rb->read_idx = 0; \

 rb->count = 0; \

} \

void ring_buffer_push_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb,
TYPE value) { \

 rb->data[rb->write_idx] = value; \

 rb->write_idx = (rb->write_idx + 1) % SIZE; \

Debunking Common Myths about C++14

 if (rb->count < SIZE) { \

 rb->count++; \

 } else { \

 rb->read_idx = (rb->read_idx + 1) % SIZE; \

 } \

} \

int ring_buffer_pop_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb, TYPE
*value) { \

 if (rb->count == 0) { \

 return 0; /* Buffer is empty */ \

 } \

 *value = rb->data[rb->read_idx]; \

 rb->read_idx = (rb->read_idx + 1) % SIZE; \

 rb->count--; \

 return 1; /* Success */ \

}

// Example usage with int type and size 5

DECLARE_RING_BUFFER(int, 5) // Declare the ring buffer type and functions
for integers

int main() {

 ring_buffer_int_5 rb;

 ring_buffer_init_int_5(&rb); // Initialize the ring buffer

 // Push values into the ring buffer

 for (int i = 0; i < 10; ++i) {

 ring_buffer_push_int_5(&rb, i);

 }

 // Pop values from the ring buffer and print them

 int value;

 while (ring_buffer_pop_int_5(&rb, &value)) {

 printf("%d\n", value);

 }

 return 0;

}

Chapter 1 15

Now, this solution solves our problems of type safety and defining the size of a ring buffer, but it

suffers from readability, both in implementation and when using it. We need to “call” DECLARE_

RING_BUFFER outside of any function, as it is basically a macro that defines a set of functions. We

also need to know what it does and the signature of functions it will generate. We can do this

better with templates. Let’s see what an implementation of a ring buffer looks like in C++.

Ring buffer in C++
Let’s make a generic implementation of a ring buffer using templates. We can use a std::array

class template as the underlying type and wrap our push-and-pop logic around it. The following

is code that illustrates how the ring_buffer type could look in C++:

#include <array>

#include <cstdio>

template <class T, std::size_t N> struct ring_buffer {

 std::array<T, N> arr;

 std::size_t write_idx = 0; // Index of the next element to write (push)

 std::size_t read_idx = 0; // Index of the next element to read (pop)

 std::size_t count = 0; // Number of elements in the buffer

 void push(T t) {

 arr.at(write_idx) = t;

 write_idx = (write_idx + 1) % N;

 if (count < N) {

 count++;

 } else {

 // buffer is full, move forward read_idx

 read_idx = (read_idx + 1) % N;

 }

 }

 T pop() {

 if (count == 0) {

 // Buffer is empty, return a default-constructed T.

 return T{};

 }

 T value = arr.at(read_idx);

Debunking Common Myths about C++16

 read_idx = (read_idx + 1) % N;

 --count;

 return value;

 }

 bool is_empty() const { return count == 0; }

};

int main() {

 ring_buffer<int, 5> rb;

 for (int i = 0; i < 10; ++i) {

 rb.push(i);

 }

 while (!rb.is_empty()) {

 printf("%d\n", rb.pop());

 }

 return 0;

}

The ring buffer implementation in C++ using templates is more readable and easier to use than

the token-pasting-based solution in C. The ring_buffer template class can be used to instantiate

ring buffer types with integer, float, or any other underlying types with different sizes. The same

push-and-pop logic can be applied to ring buffers with different underlying types. We can apply

the Don’t Repeat Yourself (DRY) principle to different types thanks to templates. Templates

make generic types easy to implement, something that’s quite challenging and verbose in C.

Templates are also used for template metaprogramming (TMP), a programming technique in

which a compiler uses templates to generate temporary source code, which is merged by the

compiler with the rest of the source code and then compiled. One of the most famous examples of

TMP is calculating a factorial at compile time. TMP is an advanced technique that will be covered

in Chapter 8. Modern C++ also features the constexpr specifier, a much more beginner-friendly

technique for compile-time computation.

Chapter 1 17

constexpr
C++11 introduced the constexpr specifier, which declares that it is possible to evaluate the value

of the function or a variable at compile time. The specifier evolved over time, extending the func-

tionality. A constexpr variable must be immediately initialized, and its type must be a literal

type (int, float, etc.). This is how we declare a constexpr variable:

constexpr double pi = 3.14159265359;

Using the constexpr specifier is the preferred way of declaring compile-time constants in C++

over using a C-style approach with macros. Let’s analyze a simple example using C-style macros:

#include <cstdio>

#define VOLTAGE 3300

#define CURRENT 1000

int main () {

 const float resistance = VOLTAGE / CURRENT;

 printf("resistance = %.2f\r\n", resistance);

 return 0;

}

The output of this simple program might be surprising:

resistance = 3.00

Both VOLTAGE and CURRENT are parsed as integer literals, and so is the result of the division.

Floating-point literals are declared using the f suffix, which was omitted in this case. Using

constexpr to define compile-time constants is safer, as it allows us to specify the type of a con-

stant. This is how we would write the same example using constexpr:

#include <cstdio>

constexpr float voltage = 3300;

constexpr float current = 1000;

int main () {

 const float resistance = voltage / current;

 printf("resistance = %.2f\r\n", resistance);

Debunking Common Myths about C++18

 return 0;

}

This would result in

resistance = 3.30

This simple example shows that constexpr compile-time constants are both safer and easier to

read than traditional C-style macro constants. The other major usage of the constexpr specifier

is to hint to the compiler that a function can be evaluated at compile time. Some of the require-

ments that a constexpr function must meet are as follows:

•	 The return type must be a literal type

•	 Each of the function parameters must be a literal type

•	 If the constexpr function is not a constructor, it needs to have precisely one return state-

ment

Let us examine a simple example utilizing constexpr functions:

int square(int a) {

 return a*a;

}

int main () {

 int ret = square(2);

 return ret;

}

To better understand what is going on under the hood, we will inspect the assembly output of

the preceding code. Assembly is quite close to the machine code, or the instructions that will be

executed on our target, thus inspecting it gives us an estimate of the work (number of instructions)

performed by the processor. The assembly output of the compilation of the preceding program for

the ARM architecture using an ARM GCC compiler and no optimization is shown in the following:

square(int):

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 str r0, [r7, #4]

Chapter 1 19

 ldr r3, [r7, #4]

 mul r3, r3, r3

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

main:

 push {r7, lr}

 sub sp, sp, #8

 add r7, sp, #0

 movs r0, #2

 bl square(int)

 str r0, [r7, #4]

 ldr r3, [r7, #4]

 mov r0, r3

 adds r7, r7, #8

 mov sp, r7

 pop {r7, pc}

The resulting assembly code is doing the following:

•	 Manipulating the stack pointer

•	 Calling the square function

•	 Storing value returned by r0 to address contained into r7 with offset 4

•	 Loading the value from address stored in r7 with offset 4 into r3

•	 Moving the value from r3 to r0, which is the ARM calling convention’s designated register

for storing return values

We can see that there are some unnecessary operations in the output binary, which both increase

the binary size and affect the performance. This example is, both valid C and valid C++ code, and

compiling it with both C and C++ compilers will yield the same assembly code.

If we use the constexpr specifier for the square function, we are instructing the compiler that it

is possible to evaluate it at compile time:

constexpr int square(int a) {

 return a*a;

}

Debunking Common Myths about C++20

int main() {

 constexpr int val = square(2);

 return ret;

}

This code results in a compile-time evaluation of the square(2) expression, making the val

integer a constexpr variable, that is, a compile-time constant. The following is the resulting

assembly code:

main:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 movs r3, #4

 str r3, [r7, #4]

 movs r3, #4

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

As we can see, the program returns the value 4, which is the result of the square(2) compile-time

computation. There is no square function in the generated assembly, just the result of the calcu-

lation that the compiler performed for us. This simple example demonstrates the power of com-

pile-time computing. We can move heavy computation from runtime to compile time whenever

we know all the computation parameters, which is often. This approach can be used to generate

lookup tables or complex mathematical signals, which will be demonstrated in the following

chapters of this book.

C++ has come a long way since C with Classes. The examples in this chapter show what C++ can

offer over C – expressive, more readable, compact code; standard template library containers;

algorithms; user-defined generic types; and compile-time computation, just to start with. I hope

I managed to debunk the myth that C++ is just C with classes. The next common myth about

C++ is that it makes bloated code and adds runtime overhead. Let’s keep debunking the myths

about C++!

Chapter 1 21

Bloat and runtime overhead
The term bloatware describes unwanted software that is preinstalled with an OS on a device. Un-

wanted software in the world of programming describes code inserted in a binary by a framework,

a library, or a language construct itself. Language constructs in C++ that are blamed for causing

code bloat are constructors, destructors, and templates. We will analyze these misconceptions

by examining assembly output generated from C++ code.

Constructors and destructors
The first thing that comes to mind to non-C++ developers when you mention C++ is that it is an

object-oriented language and that you are bound to instantiate objects. Objects are instances of

classes. They are variables that occupy memory. Special functions, called constructors, are used

to construct or instantiate objects.

Constructors are used to initialize objects, including the initialization of class members, and de-

structors are used to clean up resources. They are tightly tied to an object’s life cycle. An object is

created using a constructor, and when the object variable goes out of scope, the destructor is called.

Constructors and destructors both increase the size of the binary and add runtime overhead,

as their execution takes time. We will examine the impact of constructors and destructors on

a simple example of a class with one private member, a constructor, a destructor, and a getter:

class MyClass

{

 private:

 int num;

 public:

 MyClass(int t_num):num(t_num){}

 ~MyClass(){}

 int getNum() const {

 return num;

 }

};

int main () {

 MyClass obj(1);

 return obj.getNum();

}

Debunking Common Myths about C++22

MyClass is a very simple class that has one private member, which we set through the constructor.

We can access it through a getter, and just for good measure, we declared a destructor, which is

empty. The following is the assembly equivalent of the preceding code compiled with no opti-

mization enabled:

MyClass::MyClass(int) [base object constructor]:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 str r0, [r7, #4]

 str r1, [r7]

 ldr r3, [r7, #4]

 ldr r2, [r7]

 str r2, [r3]

 ldr r3, [r7, #4]

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

MyClass::~MyClass() [base object destructor]:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 str r0, [r7, #4]

 ldr r3, [r7, #4]

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

MyClass::getNum() const:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 str r0, [r7, #4]

 ldr r3, [r7, #4]

 ldr r3, [r3]

Chapter 1 23

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

main:

 push {r4, r7, lr}

 sub sp, sp, #12

 add r7, sp, #0

 adds r3, r7, #4

 movs r1, #1

 mov r0, r3

 bl MyClass::MyClass(int) [complete object constructor]

 adds r3, r7, #4

 mov r0, r3

 bl MyClass::getNum() const

 mov r4, r0

 nop

 adds r3, r7, #4

 mov r0, r3

 bl MyClass::~MyClass() [complete object destructor]

 mov r3, r4

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 pop {r4, r7, pc}

Don’t worry about the assembly if you don’t understand it. We can see there are some labels for

functions and a whole lot of instructions. That’s a lot of instructions for a simple abstraction of a

class; this is the bloat code that we don’t want in our binary. To be more precise, we have 59 lines

of assembly code. If we were to enable optimization, the resulting assembly would be a couple of

lines long, but let’s keep analyzing this problem with no optimization involved. The first thing

we are noticing is that the destructor doesn’t do anything useful. If we remove it from the C++

code, the resulting assembly is 44 lines long:

MyClass::MyClass(int) [base object constructor]:

 push {r7}

 sub sp, sp, #12

Debunking Common Myths about C++24

 add r7, sp, #0

 str r0, [r7, #4]

 str r1, [r7]

 ldr r3, [r7, #4]

 ldr r2, [r7]

 str r2, [r3]

 ldr r3, [r7, #4]

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

MyClass::getNum() const:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 str r0, [r7, #4]

 ldr r3, [r7, #4]

 ldr r3, [r3]

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

main:

 push {r7, lr}

 sub sp, sp, #8

 add r7, sp, #0

 adds r3, r7, #4

 movs r1, #1

 mov r0, r3

 bl MyClass::MyClass(int) [complete object constructor]

 adds r3, r7, #4

 mov r0, r3

 bl MyClass::getNum() const

 mov r3, r0

 nop

Chapter 1 25

 mov r0, r3

 adds r7, r7, #8

 mov sp, r7

 pop {r7, pc}

As we can see, there is no call to the destructor, and there is no destructor code in the binary. The

lesson is you don’t pay for what you don’t use. This is one of the design principles of C++. By deleting

the destructor, there is no need for the compiler to generate any code for it and to call it when the

object variable goes out of the scope.

The next thing we must realize is that C++ is not an OOP language. It is a multiparadigm language.

It is procedural, object-oriented, generic, and even a little bit functional at the same time. If we

want to have private members that can be set only through constructors, then we need to pay the

price for that. Structs in C++ have public members by default, so let’s change the MyClass class

to a MyClass struct with no constructor:

struct MyClass

{

 int num;

};

int main () {

 MyClass obj(1);

 return obj.num;

}

Setter and getter functions are common in the OOP paradigm, but C++ is not (just) an OOP

language and we are not bound to using setters and getters. When we remove the getNum getter,

we have a very basic example of a struct with just one member. The resulting assembly is only

14 lines long:

main:

 push {r7}

 sub sp, sp, #12

 add r7, sp, #0

 movs r3, #1

 str r3, [r7, #4]

Debunking Common Myths about C++26

 ldr r3, [r7, #4]

 mov r0, r3

 adds r7, r7, #12

 mov sp, r7

 ldr r7, [sp], #4

 bx lr

As trivial as this example is, its purpose is to establish two ground truths:

•	 You don’t pay for what you don’t use

•	 Using C++ doesn’t mean you are bound to an OOP paradigm

We need to pay the price in binary size if we want to use abstractions such as constructors and

destructors. Using types (classes and structs) without instantiating objects in C++ offers signifi-

cant benefits to your embedded software design beyond traditional object-oriented approaches.

We’ll explore this through detailed examples in the upcoming chapters.

In this and previous examples, we compiled C++ code with disabled optimizations, and we were

able to see the resulting assembly code results in unnecessary operations that can be removed.

Let’s check the assembly code for the last example with the O3 optimization level enabled:

main:

 movs r0, #1

 bx lr

The preceding assembly is the output of the original example with the class, constructor, de-

structor, and getter function. The resulting program has just two instructions. The value of the

num member of the obj variable is stored in the r0 register as the return value. Assembly code is

stripped of all necessary instructions related to stack manipulation and usage of r3 to store a value

in a stack pointer with an offset of 4, reload it to r3, and move it to r0. The resulting assembly is

just a few lines of code.

Removing unnecessary instructions is a job for the optimization process. Yet, optimization is often

avoided in embedded projects, as some claim that it breaks code. But is that true?

Optimization
Unoptimized code results in unnecessary instructions affecting binary size and performance.

However, many embedded projects are still built with disabled optimization, as developers do

not trust the compiler and are afraid it will break the program. There is some truth to this, but as it

turns out, this happens when the program is not well formed. The program is not well formed if

it contains undefined behavior.

Chapter 1 27

One of the best-known examples of undefined behavior is signed integer overflow. The standard

doesn’t define what happens if you add 1 to the maximum value of the signed integer on your

platform. The compiled program is not required to do anything meaningful. A program is not

well formed. Let’s examine the following code:

#include <cstdio>

#include <limits>

int foo(int x) {

 int y = x + 1;

 return y > x;

}

int main() {

 if(foo(std::numeric_limits<int>::max())) {

 printf("X is larger than X + 1\r\n");

 }

 else {

 printf("X is NOT larger than X + 1. Oh nooo !\r\n");

 }

 return 0;

}

Compiling the code using GCC for both x86 and Arm Cortex-M4 will yield the same results. If

the program is compiled without the optimization, the foo function returns 0, and you can see X

is NOT larger than X + 1. Oh nooo ! in the output. The compiler does the integer overflow, and if

we pass the maximum integer value to foo, it will return 0. Keep in mind that the standard does

not specify this, and this behavior depends on the compiler.

If we compile the program with optimization enabled, the output is X is larger than X + 1, which

means that foo returns 1. Let’s examine the assembly output of the program compiled with the

optimization:

foo(int):

 movs r0, #1

 bx lr

.LC0:

 .ascii "X is larger then X + 1\015\000"

Debunking Common Myths about C++28

main:

 push {r3, lr}

 movw r0, #:lower16:.LC0

 movt r0, #:upper16:.LC0

 bl puts

 movs r0, #0

 pop {r3, pc}

As we can see, foo doesn’t perform any calculations. The compiler assumes that the program is well

formed and that there is no undefined behavior. foo will always return 1. It is up to the developer

to ensure that there is no undefined behavior in the program. This is exactly the reason why the

myth that the optimization breaks the program is still alive. It is easier to blame the compiler for

not handling the undefined behavior.

Of course, it is possible that there is a bug in a compiler that breaks the functionality of the program

if the optimization is used, and the program works fine if it is disabled. This is very rare but not

unheard of, and that’s why there are verification techniques such as unit and integration testing

that ensure the functionality of the code, whether it is built with or without the optimization

enabled.

Optimization is reducing the binary size and improving performance by removing unnecessary

instructions from the machine code. Undefined behavior is compiler-dependent and must be

handled by the developer to ensure the program is well formed. Techniques such as unit and

integration testing should be put in place to validate the functionality of the program, mitigat-

ing the risk of compiler malforming the program. The optimization process is essential for using

abstractions in C++ code while keeping the binary footprint minimum and performance at a

maximum. We will use the highest optimization level, O3, in the rest of the book.

The next suspect for code bloat that we will examine are templates. How do they cause the code

bloat, and what value do they bring to our embedded code bases?

Templates
Instantiating templates with different parameters will result in the compiler generating distinct

types, which effectively increases the binary size. This is to be expected. We have the exact same

situation with the generic implementation of a ring buffer in C using the token-pasting operator

and macros. An alternative is type erasure, which we used in C implementation using a void pointer.

It suffers in flexibility if we impose the restriction of static data allocation and performance due

to pointer indirection.

Chapter 1 29

Using generic types is a choice of design. We can use them and pay the price in increased binary

size, but that would also happen if we were to implement ring buffers for different data types

separately (ring_buffer_int, ring_buffer_float, etc.). Maintaining a single templated type

is much easier than fixing the same bug in a few different places in the code base. The usage of

generic types doesn’t result in a binary size any larger than the size of an equivalent implemen-

tation of individual types. Let’s examine the impact of templates on binary size in relation to

separate implementations using the ring_buffer example:

int main() {

#ifdef USE_TEMPLATES

 ring_buffer<int, 10> buffer1;

 ring_buffer<float, 10> buffer2;

#else

 ring_buffer_int buffer1;

 ring_buffer_float buffer2;

#endif

 for (int i = 0; i < 20; i++) {

 buffer1.push(i);

 buffer2.push(i + 0.2f);

 }

 for (int i = 0; i < 10; i++) {

 printf("%d, %.2f\r\n", buffer1.pop(), buffer2.pop());

 }

 return 0;

}

The program will use a generic ring_buffer type if built with USE_TEMPLATES defined, and it will

use the ring_buffer_int and ring_buffer_float types otherwise. If we build this example with

GCC with no optimization enabled, it will result in a slightly bigger binary size in the template

version (24 bytes). This is due to larger symbols in the symbol table when using the templated

version. If we strip the symbol table from the object files, they will result in the same size. Also,

building two versions with O3 results in the same binary size.

Debunking Common Myths about C++30

Generic types do not increase the binary size more than if we wrote instantiated types by hand

as separate types. Templates have an effect on the build time due to the instantiation of concrete

types in different compilation units, and there are techniques to avoid this if needed. All functions

related to the instantiated types with the same parameters will result in a single function in the

binary, as the linker will remove duplicate symbols.

RTTI and exceptions
Runtime type information (RTTI) in C++ is a mechanism that allows the type of an object to be

determined at runtime. Most compilers implement RTTI using the virtual tables. Each polymor-

phic class (a class with at least one virtual function) has a virtual table that, among other things,

includes type information for runtime type identification. RTTI imposes both time and space

costs. It increases binary size and affects the runtime performance if type identification is used.

This is the reason why compilers have a way of disabling RTTI. Let’s examine a simple example

with a base and derived class:

#include <cstdio>

struct Base {

 virtual void print () {

 printf("Base\r\n");

 }

};

struct Derived : public Base {

 void print () override {

 printf("Derived\r\n");

 }

};

void printer (Base &base) {

 base.print();

}

int main() {

 Base base;

 Derived derived;

 printer(base);

 printer(derived);

Chapter 1 31

 return 0;

}

The output of the program is as follows:

Base

Derived

Classes with virtual functions have vtables that are used for dynamic dispatching. Dynamic

dispatch is a process of selecting which implementation of a polymorphic function is used. The

printer function accepts a reference to the Base class. Depending on the type of reference passed

to printer (Base or Derived), the dynamic dispatching process will select the print method from

either the Base or Derived class. Vtables are also used to store type information.

By using dynamic_cast, as a part of the RTTI mechanism, we can find the information about the

type using a reference or pointer to the superclass. Let’s modify the printer method from the

previous example:

void printer (Base &base) {

 base.print();

 if(Derived *derived = dynamic_cast<Derived*>(&base); derived!=nullptr)
{

 printf("We found Base using RTTI!\r\n");

 }

}

The output is as follows:

Base

Derived

We found Base using RTTI!

As we already mentioned, RTTI can be disabled. In GCC, we can do this by passing the -fno-rtti

flag to the compiler. If we try to compile the modified example using this flag, the compiler will

raise error: dynamic_cast' not permitted with '-fno-rtti'. If we restore the printer

method to the original implementation, remove the if statement, and build it with both RTTI

enabled and then disabled, we can notice that the binary size is larger when RTTI is enabled. RTTI

is useful in certain scenarios, but it adds a massive overhead to resource-constrained devices, so

we will leave it disabled.

Debunking Common Myths about C++32

Another C++ feature that is often disabled in embedded projects in C++ is exceptions. Exceptions

are an error-handling mechanism based on a try-catch block. Let’s take a look at a simple example

utilizing exceptions to understand them better:

#include <cstdio>

struct A {

 A() { printf("A is created!\r\n"); }

 ~A() { printf("A is destroyed!\r\n"); }

};

struct B {

 B() { printf("B is created!\r\n"); }

 ~B() { printf("B is destroyed!\r\n"); }

};

void bar() {

 B b;

 throw 0;

}

void foo() {

 A a;

 bar();

 A a1;

}

int main() {

 try {

 foo();

 } catch (int &p) {

 printf("Catching an exception!\r\n");

 }

 return 0;

}

Chapter 1 33

The output of the program is as follows:

A is created!

B is created!

B is destroyed!

A is destroyed!

Catching an exception!

In this simple example, foo is called in the try block. It creates a local object, a, and calls bar.

The bar function creates a local object, b, and throws an exception. In the output, we see that A

and B are created, then B gets destroyed, then A gets destroyed, and we finally see that the catch

block gets executed. This is called stack unwinding, and for it to happen, standard implemen-

tations most commonly utilize unwind tables, which store information about catch handlers,

destructors to be called, and so on. Unwind tables can grow large and become complex, which

increases the memory footprint of the application and introduces non-determinism due to the

mechanism used at runtime for exception handling. This is why exceptions are often disabled in

embedded system projects.

Summary
C++ is guided by the zero-overhead principle. The only two language features that do not follow

it are RTTI and exceptions, and that’s why compilers support a switch for turning them off.

The zero-overhead principle is based on two statements that we established in this chapter:

•	 You don’t pay for what you don’t use

•	 What you do use is just as efficient as what you could reasonably write by hand

RTTI and exceptions are disabled in most embedded projects, so you don’t pay for them. Using

generic types and templates is a design choice and is no more expensive than writing individual

types by hand (ring_buffer_int, ring_buffer_float, and so on), but it lets you reuse the code

logic for different types, makes the code more readable and easier for maintenance.

Working on high-risk systems is not a reason to disable compiler optimization capabilities. Code

functionality needs to be verified whether we are building a program with optimization disabled

or enabled. The most common source of bugs when optimization is enabled is undefined behavior.

Understanding the undefined behavior and preventing it is up to the developer.

Debunking Common Myths about C++34

Modern C++ is a language that has a lot to offer to the embedded world. The mission of this book

is to help you discover C++ and what it can do for your embedded projects, so let’s embark on the

path of discovering C++ and utilizing it to solve problems in the embedded domain.

In the next chapter, we will go over challenges in embedded systems with limited resources and

dynamic memory management in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

2
Challenges in Embedded
Systems with Limited Resources

If you are reading this book, chances are you have a good grasp of embedded systems. There are

many definitions of embedded systems, and while the following may not be the most common,

it captures the essence shared by others. Embedded systems are specialized computing systems

for specific use with a limited set of responsibilities, in contrast to general-purpose computing

systems. Embedded systems can be embedded in a larger electronic or mechanical system, or

act as a standalone device.

The line between embedded systems and general-purpose computing devices is sometimes

blurred. We can all agree that the system that controls a toaster or a pump in an airplane is an

embedded system. Cellphones and early smartphones were also considered embedded systems.

Nowadays, smartphones are closer to the definition of a general-purpose computing device. In

this book, we will focus on firmware development using modern C++ on small embedded systems

or resource-constrained embedded systems.

Resource-constrained embedded systems are often employed in safety-critical applications. They

have a responsibility to control a process in a timely manner and they cannot fail, as failure can

mean the loss of human lives. In this chapter, we will cover limitations imposed by regulations

on software development for safety-critical devices and implications for the usage of C++. We

will learn how to mitigate these concerns.

Challenges in Embedded Systems with Limited Resources36

In this chapter, we’re going to cover the following main topics:

•	 Safety-critical and hard real-time embedded systems

•	 Dynamic memory management

•	 Disabling unwanted C++ features

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard,

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter02).

Safety-critical and hard real-time embedded systems
Safety-critical embedded systems are systems whose failure may result in damage to property

or environment, injury to people, or even a loss of life. Failure of these systems is not acceptable.

Brakes, steering systems, and airbags in cars are good examples of safety-critical systems. The

correct functioning of these systems is essential for the safe operation of a vehicle.

Next, we will analyze the real-time requirements of an airbag control unit in a car.

Airbag control unit and real-time requirements
Safety-critical embedded systems often impose hard real-time requirements, meaning that

any missed deadline results in system failure. An Airbag Control Unit (ACU) collects data

from accelerometers and pressure sensors, runs an algorithm that processes the collected data,

and detects side, front, and rear-end crashes. Upon the crash detection, the ACU controls the

deployment of different restraint systems, including airbags and seat belt tensioners.

ACU implementations must be resilient to different scenarios, such as malfunctioning sensors and

electronics. These are mitigated by redundant sensors, comparing data from sensors, comparing

data against thresholds, and self-tests. Most importantly, ACUs need to meet timing requirements,

as they have only a couple of milliseconds to collect data, make decisions, and initiate deployment

of restraint systems.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter02
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter02

Chapter 2 37

The ACU fails if it doesn’t detect a crash on time, but it also fails if it deploys restraint systems

just a bit too late, as this can do more harm to a driver and passengers than if the ACU hadn’t

initiated a deployment at all. This is why an ACU must meet hard real-time requirements, and

when it comes to firmware, this means all the worst-case execution times must be predictable.

The effect of delayed airbag deployment is the subject of many studies concerned with injuries

caused to occupants. The following extract is part of the conclusion from the paper Study regarding

the influence of airbag deployment time on the occupant injury level during a frontal vehicle collision,

published at MATEC Web of Conferences 184(1):01007, by authors Alexandru Ionut Radu, Corneliu

Cofaru, Bogdan Tolea, and Dragoș Sorin Dima, outlining results of simulations of delayed airbag

deployment:

A graphic illustration of collision and delayed airbag deployment is shown in the following figure

(source: https://www.researchgate.net/publication/326715516_Study_regarding_the_
influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_

vehicle_collision):

“It has been found that by increasing the delay of the airbag deployment time in the

event of a frontal impact, the probability of injury to the occupant’s head increases

by up to 46%. Reducing the distance between the occupant’s head and the dashboard

/ steering wheel when the airbag ignites would result in a force expansion of the gas

that is transmitted to the occupant’s head generating an extra acceleration and also

throws back the occupant increasing the injury potential due to the impact between

the head and headrest. Thus, an increase in injury probability of 8% was observed

in the 0 ms delay of the airbag deployment, while a 100 ms delay resulted in a 54%

increase in the head acceleration value. So, the role of the airbag is reversed, it no

longer has the role of cushioning the collision, but to generate injuries.”

https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision
https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision
https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision

Challenges in Embedded Systems with Limited Resources38

Figure 2.1 – Crash simulation with delayed restraint system deployment

Figure 2.1 effectively illustrates what happens if an ACU doesn’t meet hard real-time requirements

and produces delayed results. The figure is taken from the paper Study regarding the influence of

airbag deployment time on the occupant injury level during a frontal vehicle collision.

 There are multiple reasons why an ACU may fail and cause no or a delayed deployment:

•	 Sensor malfunctioning

•	 Electronics malfunctioning

•	 Crash detection algorithm failure

•	 Firmware failure to meet a deadline

Sensors and electronics malfunctioning are mitigated by redundancy, data sanity checks, cross-

comparison, and startup and runtime self-tests. This puts additional stress on firmware and

its correct functioning. A crash detection algorithm may fail due to a bad model that was built

upon, or other factors that are out of firmware responsibilities. The firmware’s job is to feed the

algorithm with sensors’ data on time, execute it in a timely manner within a set time window,

and act based on the output of the algorithm.

Chapter 2 39

Measuring firmware performance and non-determinism
How do we ensure that the firmware will run all functions within imposed real-time requirements?

We measure it. We can measure different metrics, such as performance profiling, response to

external events, and A-B timing. Performance profiling will tell us in which functions the program

spends the most time. Response to external events will indicate how much time it takes for a

system to respond to an external event, such as an interrupt or a message on a communication bus.

A-B timing and real-time execution
The most important metric when dealing with real-time requirements is A-B timing. We measure

how long it takes for firmware to execute a program from point A to point B. A-B timing can

measure a function’s duration, but not necessarily. We can use it to measure different things.

Going from A to B can take different times, based on the state of the system and inputs.

A simple way to make an A-B measurement is toggling a General Purpose Input Output (GPIO)

and using an oscilloscope to measure the time between changes of a GPIO. It’s a simple solution

that works well but doesn’t scale, as we would need a GPIO for every function we want to

measure or we’d need to measure one function at a time. We could also use the internal timer of

a Microcontroller Unit (MCU)to make precise measurements and output that information over a

UART port. This would require us to utilize a general-purpose timer just for the sake of measuring.

Most microcontrollers have specialized units for instrumentation and profiling.

Some ARM-based microcontrollers have a Data Watchpoint and Trace (DWT) unit. DWT is used

for data tracing and system profiling, including the following:

•	 Program Counter (PC) sampling

•	 Cycle counting

DWT generates events and outputs them using an Instrumentation Trace Macrocell (ITM) unit.

The ITM unit can also be used to output data generated from the firmware itself, in the printf

style. ITM buffers data and sends it over to an ITM sink. Single Wire Output (SWO) can be used

as an ITM sink.

We can utilize DWT and ITM for profiling as follows:

1.	 DWT can generate periodic sampling of the PC and use ITM to send them over SWO.

2.	 On a host machine, we capture and analyze the received data.

3.	 By using a linker map file for our firmware, we can generate the distribution of time spent

in each of the functions in our program.

Challenges in Embedded Systems with Limited Resources40

This can help us to see which function takes the most time. It’s not particularly useful for A-B

timing measurements, but it allows us to see where the program spends most of the time without

any direct software instrumentation except setting up DWT and ITM units.

Sotware instrumentation with GCC
GNU Compiler Collection (GCC) supports software instrumentation by using the -finstrument-

functions flag to instrument functions’ entries and exists. This inserts entry and exit calls to

each function with the following signature:

__attribute__((no_instrument_function))

void __cyg_profile_func_enter(void *this_fn, void *call_site)

{

}

__attribute__((no_instrument_function))

void __cyg_profile_func_exit(void *this_fn, void *call_site)

{

}

We can utilize DWT and ITM in the __cyg_profile_func_enter and __cyg_profile_func_exit

functions to send the clock cycle count and analyze it on the host machine to make A-B timing

measurements. The following is an example of a simplified implementation of entry and exit

functions:

extern "C" {

__attribute__((no_instrument_function))

void __cyg_profile_func_enter(void *this_fn, void *call_site)

{

 printf("entry, %p, %d", this_fn, DWT_CYCCNT);

}

__attribute__((no_instrument_function))

void __cyg_profile_func_exit(void *this_fn, void *call_site)

{

 printf("exit, %p, %d", this_fn, DWT_CYCCNT);

}

}

The preceding implementation uses extern "C" as a linkage language specifier for entry and

exit instrumentation functions as they are linked with C libraries by the compiler. The example

also assumes that printf is redirected to use ITM as output and that the cycle counter register

in DWT is started.

Chapter 2 41

Another option is to use ITM’s timestamping and send both timestamps and function addresses

from entry and exit instrumentation functions. With the help of a linker map file, we can then

reconstruct the sequence of function calls and returns. There are specialized formats for sending

traces, such as Common Trace Format (CTF), and desktop tools called trace viewers that can

allow us to streamline software instrumentation. CTF is an open format used to serialize an event

in a packet with one or more fields. Specialized tools, such as barectf (https://barectf.org/

docs/barectf/3.1/index.html) are used to facilitate CTF packet generation.

Events are described using a YAML Ain’t Markup Language (YAML) configuration file. A simple

C library containing trace functions is generated by barectf using the configuration file. These

functions are used in source code in places where we want to emit traces.

CTF traces can be sent over different transport layers such as ITM or serial. Traces can be analyzed

using tools such as Babeltrace (https://babeltrace.org) and TraceCompass (https://eclipse.

dev/tracecompass). There are other tools that facilitate trace generation, transfer, and viewing

such as SEGGER SystemView. On the target side, a small software module provided by SEGGER

is included to make calls to tracing functions. Traces are sent over SEGGER’s Real Time Transfer

(RTT) protocol using SWD and analyzed in SystemView.

We covered some basic approaches to A-B timing. There are more advanced techniques, and they

often depend on the target capabilities, as there are some more advanced tracing units that can

be utilized for A-B measurements.

Determinism vs. Non-Determinism in Firmware
If we measure the duration of a function using the A-B timing approach and have the same

duration and function output for the same inputs, we say that the function is deterministic. If

a function depends on a global state and the measured duration is different for the same inputs,

we say it is non-deterministic.

Default dynamic memory allocators in C++ tend to be non-deterministic. The duration of

allocation depends on the current global state of the allocator and the complexity of the allocating

algorithm. We can measure duration for the same inputs with different global states, but it is hard

to evaluate all possible global states and to guarantee the Worst-Case Execution Time (WCET)

with default allocators.

The non-deterministic behavior of dynamic memory allocation is just one problem for safety-

critical systems. The other problem is that it can fail. If there is no more available memory or if

the memory is fragmented, then the allocation can fail. This is why many safety coding standards

such as Motor Industry Software Reliability Association (MISRA) and Automotive Open System

Architecture (AUTOSAR) discourage dynamic memory.

https://barectf.org/docs/barectf/3.1/index.html
https://barectf.org/docs/barectf/3.1/index.html
https://babeltrace.org
https://eclipse.dev/tracecompass
https://eclipse.dev/tracecompass

Challenges in Embedded Systems with Limited Resources42

We will explore dynamic memory management implications and safety-critical concerns next.

Dynamic memory management
The C++ standard defines the following storage durations for objects:

•	 Automatic storage duration: Objects with automatic storage duration are automatically

created and destroyed as the program enters and exits the block in which they are defined.

These are typically local variables within functions, except those declared static, extern,

or thread_local.

•	 Static storage duration: Objects with static storage duration are allocated when the

program starts and deallocated when the program ends. All objects declared at the

namespace scope (including the global namespace) have this static duration, plus those

declared with static or extern.

•	 Thread storage duration: Introduced in C++11, objects with thread storage duration are

created and destroyed with the thread in which they are defined, allowing each thread

to have its own instance of a variable. They are declared with the thread_local specifier.

•	 Dynamic storage duration: Objects with dynamic storage duration are explicitly created

and destroyed using dynamic memory allocation functions (new and delete in C++), giving

the software developer control over the lifetime of these objects.

Dynamic storage gives great flexibility to a software developer, providing full control over an

object’s lifetime. With great power comes great responsibility. Objects are dynamically allocated

using the new operator and freed using delete. Every object that is allocated dynamically must be

freed exactly once and should never be accessed after it has been freed. This is a straightforward

rule but failing to follow it causes a range of problems, such as the following:

•	 Memory leaks occur when dynamically allocated memory is not freed properly. Over time,

this unused memory accumulates potentially exhausting system resources.

•	 Dangling pointers happen when a pointer still references a memory location that has

been freed. Accessing such a pointer leads to undefined behavior.

•	 Double free errors occur when memory that has already been freed is deleted again, leading

to undefined behavior.

Another problem with dynamic memory management is memory fragmentation.

Chapter 2 43

Memory fragmentation
Memory fragmentation occurs when free memory is divided into small, non-contiguous blocks

over time, making it difficult or impossible to allocate large blocks of memory even when there

is enough free memory available in total. There are two main types:

•	 External fragmentation: This happens when there is enough total memory available

to satisfy an allocation request but no single continuous block is large enough due to

fragmentation. It’s common in systems where memory allocation and deallocation occur

frequently, and sizes vary significantly.

•	 Internal fragmentation: This occurs when allocated memory blocks are larger than the

requested memory, leading to wasted space within allocated blocks. It happens when

using allocators that have fixed-size memory blocks or memory pools and with allocators

designed to give WCET.

Memory fragmentation leads to inefficient memory use, reducing the performance or preventing

further allocations resulting in out-of-memory scenarios, even when it appears that sufficient

memory is available. Let’s visualize the memory region reserved for dynamic memory allocation

in the following figure:

Figure 2.2 – Memory region used for dynamic allocation

Challenges in Embedded Systems with Limited Resources44

In Figure 2.2, each block represents a memory unit allocated during the allocation process. Empty

regions were not allocated, or they were freed using the delete operator. Even though there is

plenty of memory available, if there were a request for the allocation of four memory units, the

allocation would fail, as there are not four continuous memory blocks available due to memory

fragmentation.

Non-deterministic behavior of default memory allocators and out-of-memory scenarios are major

concerns for safety-critical systems. MISRA and AUTOSAR provide coding guidelines for the use

of C++ in safety-critical systems.

MISRA is an organization that provides guidelines for the software developed for electronic

components used in the automotive industry. It is a collaboration between vehicle manufacturers,

component suppliers, and engineering consultancies. Standards produced by MISRA are also used

in aerospace, defense, space, medical, and other industries.

AUTOSAR is a global development partnership by automotive manufacturers, suppliers, and

other companies from the electronics, semiconductor, and software industries. AUTOSAR also

produces guidelines for the use of C++ in critical and safety-related systems.

Safety-critical guidelines for dynamic memory management
in C++
MISRA C++ 2008, which covers the C++03 standard, prohibits the usage of dynamic memory

allocation, while AUTOSAR’s Guidelines for the use of the C++14 language in critical and safety-related

systems specifies, among others, the following rules:

•	 Rule A18-5-5 (required, toolchain, partially automated)

“Memory management functions shall ensure the following: (a) deterministic

behavior resulting with the existence of worst-case execution time, (b)

avoiding memory fragmentation, (c) avoid running out of memory, (d)

avoiding mismatched allocations or deallocations, (e) no dependence on

non-deterministic calls to kernel.”

Chapter 2 45

•	 Rule A18-5-6 (required, verification / toolchain, non-automated)

Now, following these two rules to the letter is an extremely hard task. We can write a custom

allocator that has deterministic WCET and minimizes fragmentation, but how do we write an

allocator that avoids running out of memory? Or, in case it happens, how do we ensure the non-

failure of the system? Every call to the allocator would need to verify the success of the operation

and, in case of failure, somehow mitigate it. Or we would need to be able to estimate the amount

of memory needed for an allocator accurately, so it doesn’t run out of memory in runtime under

any circumstances. This adds a whole new layer of complexity to our software design and adds

more complexity than we would add value by allowing dynamic memory allocation.

An in-between approach to dynamic memory allocation policy is to allow it on startup, but not

when the system is running. This is the policy used by Joint Strike Fighter Air Vehicle C++ Coding

Standards. MISRA C++ 2023 also advises against the usage of dynamic memory allocation when

the system is running, and as a mitigation policy, recommends using it at startup.

The C++ standard library uses dynamic memory allocation heavily. Exception handling mechanism

implementations also often use dynamic allocation. Before dismissing the idea of using the

standard library in embedded projects, let’s discover the internal workings of the std::vector

container and see what C++ offers to mitigate our concerns.

Dynamic memory management in the C++ standard library
We introduced std::vector as a container from the standard library that uses dynamic memory

allocation. vector is a template class, and we can specify the underlying type. It stores the elements

contiguously, and we can get direct access to the underlying contiguous storage using the data

method.

 “An analysis shall be performed to analyze the failure modes of dynamic

memory management. In particular, the following failure modes shall be

analyzed: (a) non-deterministic behavior resulting with nonexistence of

worst-case execution time, (b) memory fragmentation, (c) running out of

memory, (d) mismatched allocations and deallocations, (e) dependence on

non-deterministic calls to kernel.”

Challenges in Embedded Systems with Limited Resources46

The following code example demonstrates the usage of a vector:

 std::vector<std::uint8_t> vec;

 constexpr std::size_t n_elem = 8;

 for (std::uint8_t i = 0; i < n_elem; i++) {

 vec.push_back(i);

 }

 const auto print_array = [](uint8_t *arr, std::size_t n) {

 for (std::size_t i = 0; i < n; i++) {

 printf("%d ", arr[i]);

 }

 printf("\r\n");

 };

 print_array(vec.data(), n_elem);

We created a vector with the underlying uint8_t type and added values from 0 to 8 using the push_

back method. The example also demonstrates access to a pointer to the underlying contiguous

storage, which we provided as an argument to the print_array lambda.

The usual allocation strategy of vector is to allocate one element on the first insertion, then

double it each time it reaches its capacity. Storing values for 0 to 8 would result in 4 allocation

requests, as shown in the following figure:

Figure 2.3 – Vector allocation requests

Chapter 2 47

Figure 2.3 depicts the vector’s allocation requests. In order to inspect vector implementation on

any platform, we can overload the new and delete operators and monitor the allocation requests:

void *operator new(std::size_t count) {

 printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

 return std::malloc(count);

}

void operator delete(void *ptr) noexcept {

 printf("%s\r\n", __PRETTY_FUNCTION__);

 std::free(ptr);

}

The new overloaded operator passes allocation calls to malloc, and it prints out the size requested

by the caller. The delete overloaded operator just prints out the function signature so we can see

when it is called. Some standard library implementations using GCC implement the new operator

using malloc. Our vector allocation calls will result in the following output:

void* operator new(std::size_t), size = 1

void* operator new(std::size_t), size = 2

void operator delete(void*)

void* operator new(std::size_t), size = 4

void operator delete(void*)

void* operator new(std::size_t), size = 8

void operator delete(void*)

The preceding results are obtained using the GCC compiler, and they are the same both for x86_64

and Arm Cortex-M4 platforms. When the vector fills the available memory, it requests allocation

of the doubled amount of currently used memory. It then copies data from the original storage

to newly acquired memory. Afterward, it deletes previously used storage, as we can see from the

preceding generated output.

Overloading the new and delete operators would allow us to change the allocation mechanism

globally, in order to meet the safety-critical guidelines requesting for deterministic WTEC and

avoiding out-of-memory scenarios, which is quite challenging.

The allocation requests from the vector can be optimized by using the reserve method if the

number of elements is known beforehand:

 vec.reserve(8);

Challenges in Embedded Systems with Limited Resources48

Using the reserve method will make the vector request eight elements, and it will ask for more

memory only if we go beyond eight elements. This makes it useful for projects that allow dynamic

allocation at startup if we can guarantee that the number of elements at any point will stay within

reserved memory. If we add a ninth element to the vector, it will make another allocation request,

requesting the memory to fit 16 elements.

The C++ standard library also makes possible usage of local allocators for containers. Let’s take

a look at the vector’s declaration:

template<

 class T,

 class Allocator = std::allocator<T>

> class vector;

We can see that the second template parameter is Allocator, and the default argument

is std::allocator, which uses the new and delete operators. C++17 introduced

std::pmr::polymorphic_allocator, an allocator that exhibits different allocation behavior

depending upon the std::pmr::memory_resource type from which it is constructed.

There is a memory resource that can be constructed by providing it with an initial, statically

allocated buffer, and it’s called std::pmr::monotonic_buffer_resource. The monotonic buffer

is built for performance, and it releases memory only when it is destroyed. Initializing it with

a statically allocated buffer makes it suitable for embedded applications. Let’s see how we can

use it for a vector:

 using namespace std;

 using namespace std::pmr;

 array<uint8_t, sizeof(uint8_t) * 8> buffer{0};

 monotonic_buffer_resource mbr{buffer.data(), buffer.size()};

 polymorphic_allocator<uint8_t> pa{&mbr};

 std::pmr::vector<uint8_t> vec{pa};

In the preceding example, we do the following:

1.	 Create a std::array container, with an underlying type of uint8_t.

2.	 Construct a monotonic buffer and provide it with the array we just created as the initial

buffer.

3.	 Use the monotonic buffer to create a polymorphic allocator, which we use to create a vector.

Chapter 2 49

Please note that the vector is from the std::pmr namespace, and it’s just a partial specialization

of std::vector, as shown here:

namespace pmr {

 template< class T >

 using vector = std::vector<T, std::pmr::polymorphic_allocator<T>>;

}

A vector created by utilizing a monotonic buffer will allocate memory in the space provided by

the buffer. Let’s examine the behavior of such a vector in the following example built from the

previously explained code:

#include <cstdio>

#include <cstdlib>

#include <array>

#include <memory_resource>

#include <vector>

#include <new>

void *operator new(std::size_t count, std::align_val_t al) {

 printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

 return std::malloc(count);

}

int main() {

 using namespace std;

 using namespace std::pmr;

 constexpr size_t n_elem = 8;

 array<uint8_t, sizeof(uint8_t) * 8> buffer{0};

 monotonic_buffer_resource mbr{buffer.data(), buffer.size()};

 polymorphic_allocator<uint8_t> pa{&mbr};

 std::pmr::vector<uint8_t> vec{pa};

 //vec.reserve(n_elem);

 for (uint8_t i = 0; i < n_elem; i++) {

 vec.push_back(i);

Challenges in Embedded Systems with Limited Resources50

 }

 for (uint8_t data : buffer) {

 printf("%d ", data);

 }

 printf("\r\n");

 return 0;

}

The preceding program will provide the following output:

void* operator new(std::size_t, std::align_val_t), size = 64

0 0 1 0 1 2 3 0

We see that even though we used the monotonic buffer, the program called the new operator.

You can notice that the call to the reserve method is commented. This will result in a vector-

expanding strategy, as described previously. When the monotonic buffer initial memory is used,

it will fall to the upstream memory resource pointer. The default upstream memory resource will

use the new and delete operators.

If we print the buffer used as initial storage for monotonic_buffer_resource, we can see that the

vector is allocating the first element and storing 0 to it, then it doubles it and stores 0 and 1, and

then doubles it again, storing 0, 1, 2, and 3. When it tries to double it again, the monotonic buffer

will not be able to meet the allocation request and will fall to using the default allocator, which

relies on the new and delete operators. We can visualize this in the following figure:

Figure 2.4 – State of the buffer used by the monotonic buffer resource

Figure 2.4 depicts the internal state of the used by the monotonic buffer resource. We can see that

the monotonic buffer resource is not deallocating memory in any way. On an allocation buffer

request, it returns a pointer to the last available element in the initial buffer if there is enough

space in the buffer to fit the requested number of elements.

Chapter 2 51

You will notice that the new operator used in this example has a different signature from the one

previously used. Actually, the standard library defines different versions of new and matching

delete operators, and it’s hard to tell which version is used by a container from the standard

library without inspection. This makes overloading them globally and replacing implementation

with a custom one even more challenging, making a local allocator usually a better choice.

The polymorphic allocator utilizing a monotonic buffer initialized with a buffer on the stack may

be a good option to mitigate some of the issues imposed by the dynamic memory management

when working with containers from the standard C++ library. The approach we demonstrated

on the vector can be used on other containers from standard libraries, such as list and map, but

also other types from the library, such as basic_string.

Mitigating concerns of dynamic memory allocation is possible but it still poses some challenges.

If you want to be absolutely sure that your C++ program is not calling a new operator, there are

means to ensure it. Let us explore how we can disable unwanted C++ features.

Disabling unwanted C++ features
You may have noticed that we used printf from the C standard library for printing debug

information on standard output instead of std::cout from the C++ standard library. The reason

is twofold – the implementation of the std::cout global object from ostream has a large memory

footprint and it uses dynamic memory allocation. C++ works well with the C standard library,

and using printf is a good alternative for resource-constrained systems.

We already discussed the exception handling mechanism, which often relies on dynamic memory

allocation. Disabling exceptions in C++ is as easy as passing the appropriate flag to the compiler.

In the case of GCC, that flag is –fno-exceptions. The same goes for Run-Time Type Information

(RTTI). We can disable it with the –fno-rtti flag.

Disabling exceptions will result in calling std::terminate when an exception is thrown. We can

replace the default terminate handler with our own implementation and handle it appropriately,

as shown in the following example:

#include <cstdio>

#include <cstdlib>

#include <exception>

#include <array>

int main() {

 constexpr auto my_terminate_handler = []() {

 printf("This is my_terminate_handler\r\n");

Challenges in Embedded Systems with Limited Resources52

 std::abort();

 };

 std::set_terminate(my_terminate_handler);

 std::array<int, 4> arr;

 for (int i = 0; i < 5; i++) {

 arr.at(i) = i;

 }

 return 0;

}

The preceding example demonstrates setting the terminate handler using std::set_terminate

by our own implementation. This allows us to handle cases that shouldn’t happen in runtime

and try to recover from them or gracefully terminate them. Some features or behaviors in C++

can’t be disabled by compiler flags, but there are other means to handle them,

As we saw previously, we can redefine global new and delete operators. We can also delete them,

which will make the compilation fail if we use a software component that calls new, effectively

allowing us to prevent any attempts of dynamic memory allocation if needed:

#include <cstdio>

#include <vector>

#include <new>

void *operator new(std::size_t count) = delete;

void *operator new[](std::size_t count) = delete;

void *operator new(std::size_t count, std::align_val_t al) = delete;

void *operator new[](std::size_t count, std::align_val_t al) = delete;

void *operator new(std::size_t count, const std::nothrow_t &tag) = delete;

void *operator new[](std::size_t count, const std::nothrow_t &tag) =
delete;

void *operator new(std::size_t count, std::align_val_t al, const
std::nothrow_t &) = delete;

void *operator new[](std::size_t count, std::align_val_t al,const
std::nothrow_t &) = delete;

int main() {

 std::vector<int> vec;

 vec.push_back(123);

Chapter 2 53

 printf("vec[0] = %d\r\n", vec[0]);

 return 0;

}

The preceding example will fail with the following compiler message (among others):

/usr/include/c++/13/bits/new_allocator.h:143:59: error: use of deleted
function 'void* operator new(std::size_t, std::align_val_t)'

 143 | return static_cast<_Tp*>(_GLIBCXX_OPERATOR_NEW (__n *
sizeof(_Tp),

By deleting new operators, we can make the compilation of a C++ program that is trying to use

dynamic memory management fail. This is useful if we want to be sure our program is not using

dynamic memory management.

Summary
C++ allows a great degree of flexibility. Resource-constrained embedded systems and safety-critical

guidelines can impose some limitations on the usage of certain C++ features, such as exception

handling, RTTI, and the usage of dynamic memory allocation by containers and other modules

from the standard C++ library. C++ acknowledges those concerns and provides mechanisms for

disabling unwanted features. In this chapter, we learned about different strategies for mitigating

concerns of dynamic memory allocation by means of local allocators and overloading global new

and delete operators.

The learning curve is steep but worth the effort, so let’s continue our journey of discovering C++

in embedded systems.

In the next chapter, we will explore the C++ ecosystem for embedded development.

3
Embedded C++ Ecosystem

At the heart of every embedded system sits a microcontroller. The transition from basic cores to

more modern ones mirrors the evolution of technology. The microcontroller landscape is vast,

ranging from cost-effective 8-bit cores and 16-bit cores to modern 32-bit Arm and RISC-V®

based microcontrollers. This variety of architecture has impacted the development of tools and

compilers. While some manufacturers have opted to focus on C support, many have recognized

the importance of C++ and provided good support for C++ development within their toolchains.

As the embedded system is vast and it is impossible to cover all of the available architectures and

vendors, we will focus on Arm® Cortex®-M as one of the dominant architectures for modern

microcontrollers and Systems on a Chip (SoCs). We will go through the available development

environments and toolchains that provide support for development in C++ for the Arm Cortex-M.

We will also go through tools such as static analyzers, learn how to profile an embedded target,

and cover methodologies such as unit testing.

In this chapter, we’re going to cover the following main topics:

•	 Compilers and development environments

•	 Static analyzers

•	 Unit testing

•	 Profiling

Embedded C++ Ecosystem56

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard,

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter03).

Compilers and development environments
The adoption of C++ in embedded systems was influenced by compiler support. While most

compilers supported C, the support for C++ was slower. Nowadays, there is a variety of compilers

and toolchains available for C++ depending on the target architecture and functional safety

requirements. Support for 32-bit architecture such as Arm Cortex-M is generally good, but the

level of support depends on the toolchain vendor and functional safety requirements.

Many vendors offer functional safety versions of their tools that include certified compilers

according to the safety standards for different industries. Functional safety standards are designed

to ensure that software operates correctly and safely, even in the event of hardware failures or

operational errors. IEC 61508 is the international umbrella safety standard for functional safety,

and the following are safety standards for some industries:

•	 ISO 26262: Automotive safety standard

•	 EN 50128: European railways safety standard

•	 IEC 62304: International standard for medical software

•	 IEC 60730-1: Automatic electrical control for household appliances

Functional safety requirements are one of the first items on our checklist when selecting a compiler

for a new project. If they call for qualified compilers, then we are limited to commercial versions

of compilers that provide qualified compilers according to the exact standard in question.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter03
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter03

Chapter 3 57

While many vendors providing tools for embedded development provide functional safety versions

of their tools and compilers, there are also free development environments and open source

compilers for embedded system development that can be used in non-critical applications.

Development environments pack different tools to make the development process seamless and

allow you to focus on the development. These tools can also be used individually and tailored

according to individual or organizational preferences. Tools used for embedded development,

either individually or integrated into a development environment, are listed as follows:

•	 Code editor: This can be as basic as a text editor or a more advanced tool such as Vim

or Visual Studio Code supporting plugins for features such as syntax highlighting,

autocompletion, code navigation across different source files, and refactoring.

•	 Compiler and linker: These are used to transform code into object files and link them

to executable and binary files that can be flashed to a target. Some of the most popular

C++ compilers are GCC, Clang, Arm Compiler for Embedded, and IAR C/C++ Compiler.

•	 Debugger: It is used to flash and debug a target. Parts of the debugging system are a

debugger probe and software that communicates with a probe to debug the connected

target.

•	 Build system: Tools such as GNU Make and Ninja are used to control the process of

compiling and linking. CMake and Bazel are used for build automation and dependency

management.

•	 Static analysis tools: These are used to analyze source code. Depending on capability, they

can detect some forms of undefined behavior such as out-of-bound access, uninitialized

variables, null pointer dereferences, and so on. Dedicated static analysis tools can check

whether the code is MISRA or AUTOSAR-compliant.

•	 Runtime profilers: These are a combination of target capabilities, software instrumentation,

and debugger probes used to measure function execution time and analyze the performance

of your software.

Most embedded integrated development environments (IDEs) provide the following capabilities:

•	 Project creation and organization

•	 Build automation

•	 Debugging

Embedded C++ Ecosystem58

Some development environments integrate more advanced features for code analysis, such as

the following:

•	 Static analysis

•	 Profiling and performance analysis

We will cover some of the most used development environments and compilers in the industry

on the next pages.

Arm Keil MDK and Arm Compiler for Embedded
Arm® Keil® MDK is a set of tools for embedded development on (mostly) Arm Cortex-M

microcontrollers and it includes the following:

•	 Keil Studio, a set of extensions for VS Code

•	 Keil μVision, a legacy Windows®-based IDE

•	 Arm Compiler for Embedded, a C and C++ compiler

•	 Arm Virtual Hardware

Both Keil Studio and Keil μVision provide all the IDE features needed for embedded development,

including project configuration for different targets, build, and debugging on target.

Keil μVision provides support for the integration of PC-Lint, a static C and C++ analyzer, while

VS Code (Keil Studio) can be configured to use clang-tidy or cppcheck.

Keil μVision is packed with Keil Simulator, allowing running firmware on simulated targets on

your PC, and it also has an integrated profiler as a part of the μVision debugger.

Arm Keil MDK comes with Arm Virtual Hardware Fixed Virtual Platforms, which is Arm’s cloud

platform that allows you to run binaries on simulated targets providing infrastructure for CI/CD

in a simulated environment.

There is a basic version of Keil MDK available for non-commercial use (Community), and two

commercial versions (Essential and Professional), depending on the features available. Only the

Professional commercial version comes with functional safety support and extended maintenance.

Next, we will cover Arm Compiler for Embedded, a C and C++ compiler that comes with MDK. It

also includes linker and standard libraries.

Chapter 3 59

Arm Compiler for Embedded is a C and C++ compiler provided by Arm. Arm also provides a

functional safety (FuSa) version of the compiler that is certified according to IEC 61508, ISO

26262, EN 50128, and IEC 62304 safety standards.

The FuSa version is available only in the highest edition of MDK – Professional.

Arm Compiler for Embedded consists of the following toolchain components:

•	 armclang, a low-level virtual machine (LLVM)-based compiler

•	 armlink, a linker that combines objects and libraries to produce an executable

•	 Arm C libraries

•	 Arm C++ libraries based on the LLVM libc++ project

Arm Compiler supports C++17 standard, while the latest version of Arm Compiler for Embedded

FuSa 6.16 supports C++ 14. Even though we are in 2024 at the time of writing this book, the support

for the latest version of the C++ standard is slow. After C++17, C++20 and C++23 were released.

Support of the latest C++ standard in commercial compilers is still rather slow, which makes the

latest language features in these environments unavailable.

IAR C/C++ Compiler and IAR Embedded Workbench
for Arm
IAR Embedded Workbench® is a development environment for Arm Cortex-M, Cortex-R, and

Cortex-A cores (IAR stands for Ingenjörsfirma Anders Rundgren). It integrates the following tools:

•	 IDE, including a debugger and profiler

•	 IAR C/C++ Compiler

•	 IAR C-STAT®, a static analyzer

•	 IAR C-RUN®, a tool for runtime analysis

IAR Embedded Workbench is a well-rounded solution for the development of Arm Cortex-M

cores. The IDE is packed with standard tools, such as a debugger, but also provides more advanced

embedded tools, such as a profiler and running firmware in the simulator.

IAR offers C-STAT, a tool for static analysis that can run static analysis against safety coding

standards such as MISRAC++2008.

Embedded C++ Ecosystem60

IAR also provides C-RUN, a tool for runtime analysis that covers heap checks, bounds checking,

buffer overrun, integer overflow, and other runtime checks by instrumenting your code.

IAR C/C++ Compiler supports C++17 from 9.30.1. The FuSa version of IAR Embedded Workbench

for Arm, version 9.50.3 (February 2024), also provides C++17 support.

IAR C/C++ Compiler and Arm Compiler for Embedded are commercial options for embedded

development. Besides the support you can expect from a commercial project, the strength of these

tools is that they provide safety-qualified versions for safety-critical projects.

Some microcontroller vendors provide their own versions of development environments, usually

based on Eclipse®, providing additional support for their own products.

Vendor-supported IDEs and GCC
Alternatives to commercial development environments are vendor-supported environments,

which are based mostly on Eclipse and GNU Compiler Collection (GCC) tools and GNU Project

Debugger (GDB) for debugging. Examples are STM32CubeIDE by ST® and MCUXpresso by NXP®.

These tools are packed with code configurator UIs that can generate C code used for GPIO

configuration, clock setup, and peripheral drivers’ initialization.

Some vendors, such as Nordic Semiconductor®, opted for VS Code as the basis of their IDE solution.

They provide plugins for GPIO configuration and debugging. VS Code is a modern code editor that

allows developers to use plugins such as IntelliSense for code completion, parameter information,

syntax highlighting, and many others to enhance the development experience.

GCC
GCC is one of the most used C and C++ compilers in general. It is free software, and it is also the

most popular compiler for non-critical applications that do not require a qualified compiler.

However, even GCC can be qualified. The process of qualification includes compiling and running

test programs and comparing outputs against expected results. All the issues that are found must

be documented and a process must be put in place to mitigate them.

Besides the compiler, GCC also includes an assembler and linker, providing users with a so-called

driver program (gcc for C and g++ for C++). When invoked, the driver program runs preprocessing,

compilation, assembly, and linking. The following figure visualizes the GCC compilation process:

Chapter 3 61

Figure 3.1 – GCC compilation process

In Figure 3.1, we see what happens when GCC is used to compile a single file, main.cpp:

1.	 GCC first runs the preprocessor, adding all header files specified with the #include

directive and expanding macros in the translation unit.

2.	 The result from the preprocessor stage is run through the compiler, generating assembly.

3.	 The output of the assembly stage is an object file.

4.	 Finally, the linker links the object file with C and C++ standard libraries and generates

an ELF file.

The GCC driver program can be supplied with additional arguments to provide outputs from

intermediate phases. To redirect preprocessor output to standard output, one can use the -E flag:

arm-none-eabi-g++ -E main.cpp

Embedded C++ Ecosystem62

The preceding command will result in a lengthy output if main.cpp includes the C Standard Input

and Output (cstdio) library. You can write a simple hello world program and see it for yourself

by running the preceding command, or you can use Compiler Explorer.

Compiler Explorer
Compiler Explorer (https://github.com/compiler-explorer/compiler-explorer) is an

interactive online compiler that shows the assembly output of compiled C++, Rust, Go, and other

code. You can try it online (https://godbolt.org/). It is a great tool that, by default, shows the

assembly output and can be used to explore different language features with different compilers

and compiler flags.

Let’s use Compiler Explorer to explore the GCC compilation process. We will select ARM GCC

11.2.1 (none) as our compiler and provide it with an -E flag. ARM GCC 11.2.1 (none), or arm-

none-eabi-gcc, is the GCC used for Cortex-M architecture. In the following figure, we can see

the preprocessor output in Compiler Explorer:

Figure 3.2 – Compiler Explorer: preprocessor output

In Figure 3.2, we can see that the preprocessor adds exactly 800 lines to our simple hello world

example. The preprocessor goes through the cstdio file, resolves all preprocessor directives, and

pastes the result in the translation unit, resulting in 808 lines of code.

https://github.com/compiler-explorer/compiler-explorer
https://godbolt.org/

Chapter 3 63

The default view of Compiler Explorer is the assembly output, which we can get by simply

removing the –E flag from the previous example, as shown in the following figure:

Figure 3.3 – Compiler Explorer: assembly output

In Figure 3.3, we can see the generated assembly output of GCC’s compilation process. We can

see that the optimization process replaced the printf function with puts. Also, we don’t see

the body of the puts function because this function is part of the C standard library that we link

against. The next steps of the process are as follows:

1.	 The assembler will generate object code from the assembly code.

2.	 The linker will link the generated object code with the C standard library that contains

the puts implementation (among other functions).

In this simple example, we went through GCC’s compilation process, which will not result in the

code that we can run on a microcontroller, as we also need to do the following steps:

1.	 Add clock and hardware peripheral initialization code.

2.	 Set compiler flags for the architecture and instruction set for our target.

3.	 Add a startup assembly script containing a reset handler and C and C++ runtime

initialization.

Embedded C++ Ecosystem64

4.	 Add a linker script defining different memory regions for a target, including RAM and

Flash regions.

5.	 Add instructions for the linker to link against specific C and C++ standard libraries.

The output from the last stage of the GCC compilation process, the linking stage, is an Executable

and Linkable Format (ELF) file. The ELF file is converted into binary or hex format using the

objdump tool, as binary and hex formats are usually used by the flashing process to be loaded on

the target.

From version 10, GCC has an integrated static analyzer, which can be enabled with the –fanalyzer

compiler flag.

Static analyzers
Static analyzers are tools that go through source code and detect potential issues with the code

such as undefined behavior, or they check whether the code is compliant with a safety standard

such as MISRA® or AUTOSAR®. Not all static analyzers have the same capabilities, and only

commercial versions support safety standards checks. Some of the issues that can be detected

with static analyzers are as follows:

•	 Use of uninitialized data

•	 Out-of-bounds array access

•	 Null pointers dereference

•	 Division by zero

•	 Use after delete, double delete, and other memory management issues

We can enable GCC’s static analyzer by providing the GCC driver program with the –fanalyzer

flag. Let us take an example of a simple sum function that takes a std::array<int, 4> constant

reference and returns the sum shown in the following example:

#include <array>

int sum(const std::array<int, 4> &arr) {

 int ret;

 for(int elem: arr) {

 ret += elem;

 }

 return ret;

}

Chapter 3 65

The issue with the preceding example is that we are not initializing the ret variable to zero. During

the stack allocation of variables in the sum function, the value of the ret variable will be populated

with anything on the allocated location, leading to undefined behavior. We can add the -fanalyzer

flag in Compiler Explorer and open the compiler output, as shown in the following screenshot:

Figure 3.4 – Compiler Explorer: static analyzer, use of uninitialized value

In Figure 3.4, we can see compiler output in a new plane, which we enabled by clicking on Output

(0/42). We can see that the static analyzer recognized that we were using an uninitialized variable

and issued the warning. GCC, like many other compilers, can issue compiler warnings, and can

also detect different issues with code, including uninitialized variables. We can enable regular

compiler warnings using flags such as -Wall, -Wextra, -Wpedantic, but in this case, they wouldn’t

catch uninitialized variables.

Embedded C++ Ecosystem66

We can see this in the following screenshot:

Figure 3.5 – Compiler Explorer: GCC warnings, uninitialized value

In Figure 3.5, we can see that GCC didn’t issue a warning for uninitialized data using regular

compiler warnings. Enabling a static analyzer using the –fanalyzer flag will help detect the

issue, but also keep in mind that static analysis takes more time, which might be an issue with

larger code bases. There is also a GCC flag, –Wuninitialized, which should generate a warning

for uninitialized variables. In this particular example, it will generate a warning only if a program

is compiled with an optimization flag different from 0 (e.g., -O2).

Different compilers have different capabilities, including detecting issues with code. If we were

to compile this example using the clang compiler (switch the compiler to armv7-a clang 11.0.1

in Compiler Explorer), we would see that the clang compiler would detect this uninitialized

variable issue and emit a warning. Also, static analyzers have different capabilities, so it is a

good practice to run your code through several static analyzers, as one may detect issues that

the others can’t, and vice versa.

Here is another example of a static analyzer in action, detecting out-of-bounds access:

Chapter 3 67

Figure 3.6 – Compiler Explorer: static analyzer, out-of-bounds access

In Figure 3.6, we are trying to access the fifth element of an array that has four elements, which

will result in undefined behavior. This was caught by the GCC’s static analyzer, which issued a

descriptive warning. In GCC, warnings can be treated as errors that will result in failed compilation

and no ELF file generated. To treat warnings as errors, just add the -Werror compiler flag to the

GCC driver program invocation.

There are other commonly used static analyzers, most notably clang-tidy and cppcheck. clang-

tidy can be enabled in Compiler Explorer using the Add tool option. Both clang-tidy (https://

clang.llvm.org/extra/clang-tidy/) and cppcheck (https://cppcheck.sourceforge.io/)

are easy to install and use, and as previously stated, it is usually a good idea to use several static

analyzers to catch different issues with the code.

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/

Embedded C++ Ecosystem68

Static analyzers are great for catching common programming errors and potential issues with

your code or making sure that code is compliant according to a safety standard, but they don’t

guarantee that the code does what it is supposed to do. To validate the actual functionality of

our firmware, we can run manual tests on a target or we can use unit testing to write test cases

for individual pieces of our code.

Unit testing
Unit testing is the process of testing units of code by using a test framework that provides

infrastructure for setting up tests, running them, and reporting them. So, what is a unit of code?

It depends on what we want to test; it can be a function or a software module, or we can reason

about unit testing as testing a unit of work. What does the firmware need to do if a user presses a

button, or what does it need to do if we receive a specific packet over a Bluetooth® Low Energy

(BLE) connection?

Depending on the granularity of unit testing, we can test different components of firmware on

the individual level and their interaction to ensure proper functionality. Unit tests test the units

of code or units of work in isolation from other software components. This forces us to focus on

the functionality of said units during the development and split the responsibilities between

components more easily, leading to more robust software.

Most of the C++ testing frameworks are not well suited for running on small, embedded targets

due to the resulting binary size, most notably, due to the usage of ostream from the standard

library. This leaves us with the option to run our unit tests on the host machine instead of the

embedded target. This is not to say that unit tests can’t be run on embedded targets. Running

tests on a target takes more time, as all tests would need to be compiled for the target and flashed

to it, and we’d need a report-catching mechanism on the host machine to read test results.

Running tests off the target on a host machine is a common practice. However, there are concerns

about this approach, as tests are run on a different architecture where even data types can have

different sizes. To address this, one can enforce the use of fixed-width data types (e.g., uint8_t

or int32_t). Additionally, there may be differences between the compilers used for the host and

target machines, so it is advisable to use the same versions of compilers. Running tests on a host

machine is faster and easier, but the differences between architectures and setups can potentially

have an impact on test results. There are manual target tests and system and integration tests

that can discover potential issues with code functionality and serve as an additional layer of

functionality validation.

Chapter 3 69

There are different testing frameworks for C++, and some of the most used are as follows:

•	 Google Test

•	 Catch2

•	 Boost.Test

•	 CppUTest

We can easily try them in Compiler Explorer by adding the relevant libraries. The first thing to

do is to add an Execution Only pane, as shown in the following figure:

Figure 3.7 – Compiler Explorer: execution pane

In Figure 3.7, we added an execution pane and selected x86-64 gcc 13.2 as the compiler. Now,

we need to add the Google Test library by clicking on the Libraries button in the execution pane.

It will open a new window in which we can search for a library and include it, as shown in the

following figure:

Figure 3.8 – Compiler Explorer: including a library

Embedded C++ Ecosystem70

In Figure 3.8, we search for the Google Test library and we add it to the project by selecting the

version in the drop-down menu. Let’s see how we can test our generic ring buffer implementation

from the first chapter using Google Test. The following is the code with ring buffer implementation

and a couple of simple tests:

#include <array>

#include <cstdio>

#include "gtest/gtest.h"

template <class T, std::size_t N> struct ring_buffer {

 std::array<T, N> arr;

 std::size_t write_idx = 0;

 std::size_t read_idx = 0;

 std::size_t count = 0;

 void push(T t) {

 arr.at(write_idx) = t;

 write_idx = (write_idx + 1) % N;

 if (count < N) {

 count++;

 } else {

 read_idx = (read_idx + 1) % N;

 }

 }

 T pop() {

 if (count == 0) {

 return T{};

 }

 T value = arr.at(read_idx);

 read_idx = (read_idx + 1) % N;

 --count;

 return value;

 }

 bool is_empty() const {

 return count == 0;

 }

 std::size_t get_count() const {

 return count;

Chapter 3 71

 }

};

TEST(RingBufferInt, PushPop) {

 ring_buffer<int, 2> rb;

 rb.push(1);

 rb.push(2);

 EXPECT_EQ(rb.pop(), 1);

 EXPECT_EQ(rb.pop(), 2);

}

TEST(RingBufferInt, GetCount) {

 ring_buffer<int, 20> rb;

 for(int i = 0; i < 50; i++) {

 rb.push(i);

 }

 EXPECT_EQ(rb.get_count(), 20);

 for(int i = 0; i < 10; i++) {

 rb.pop();

 }

 EXPECT_EQ(rb.get_count(), 10);

}

int main() {

 testing::InitGoogleTest();

 return RUN_ALL_TESTS();

}

In the preceding example, the ring buffer implementation is the same as in the first chapter with

the addition of the get_count method, which returns the number of elements currently held by

the buffer. We defined a test suite, RingBufferInt, using the TEST macro. We specified two tests

named PushPop and GetCount.

In the PushPop test, we are testing the push and pop functionality of the ring buffer, making sure

that pop will return pushed values in the correct order using the EXPECT_EQ macro.

Embedded C++ Ecosystem72

In the GetCount test, we are checking whether the number of elements held by the buffer matches

the intended functionality using the following scenario:

1.	 We first push 50 values to the buffer, which can hold a maximum of 20 values, making

sure that get_count will return 20.

2.	 We then pop 10 values from the buffer and check whether the count will be equal to 10.

Running the preceding program will result in Google Test generating a report on standard output,

as in the following figure:

Figure 3.9 – Compiler Explorer: Google Test execution

In Figure 3.9, we see the results of our tests in the execution pane. The TEST macro will ensure

that tests are automatically registered in the framework so we don’t need to add them manually.

This allows us to focus on writing tests utilizing the infrastructure provided by the framework.

Google Test offers a lot more, and this example is just a glimpse into its capabilities.

Writing unit tests makes us think about how our code interacts with other software modules

in the system. By focusing on units of code, we can write code that is loosely coupled, making

our software more flexible and robust. Unit tests are crucial for development techniques such

as Test-Driven Development (TDD), which requires us to write tests before we write the code.

After we write a unit test, we write the actual code just to pass the test, and then we add more

tests, refactor the implementation, and iterate on the process.

Chapter 3 73

Unit tests are a powerful tool for validating the functionality of our code, whether we run them on

the target or the host platform. Still, they don’t tell us a lot about the performance of our firmware.

For that, we need to run the production firmware on the target and measure the performance

using profiler tools.

Profiling
Running code on the target and profiling is the best way to ensure the Worst-Case Execution

Time (WCET) for critical functionality and make necessary optimizations if needed.

The challenge with profiling is that it is an intrusive operation, as the code source needs to be

modified or instrumented to enable traces that can tell us more about what is happening internally

on the target.

Profiling depends on target capabilities. Some cores have integrated units for tracing, as we saw

in the previous chapter, providing profiling that is minimally invasive. Also, some targets have

special interfaces that allow high-speed trace data transfer using advanced debugging and tracing

probes connected to the host machine. We can see an example of profiling infrastructure used

for some Cortex-M targets in the following figure:

Figure 3.10 – Arm target connected to host machine over a debug probe

Embedded C++ Ecosystem74

In Figure 3.10, we can see an Arm target connected over a debugging probe to a host machine.

Profiling, or trace data flow, can be described through the next steps:

1.	 A Program Counter (PC) is sampled using DWT and generates an event.

2.	 ITM sends events generated by DWT and instrumented code over Single Wire Output

SWO to a debugging probe.

3.	 The debugging probe transfers trace data to capturing software on the host machine

over USB.

4.	 Capturing software is usually a part of a larger software package that can analyze and

visualize captured received data.

In order to have precise information about function execution times, the source code needs to

be instrumented by adding instructions that will generate trace data. We saw how this can be

achieved in the previous chapter using GCC’s compiler features for adding instructions to the

entry and exit of every function. This data can be sent using ITM to profiler software running on

the host machine. This approach has good accuracy, but by adding instructions to code, we are

degrading performances for the sake of measurement.

PC sampling can be less intrusive than code instrumentation, but it is less accurate and can serve

only to detect bottlenecks in the firmware without precise timing information.

Some Arm cores have an integrated Embedded Trace Macrocell (ETM). ETM records instruction

execution, generates trace data, and sends it to the connected probe. With the instruction trace

data, a profiler can measure the execution time of functions accurately and create a call graph of

each function call, the same as code instrumentation. ETM enables code profiling without the

instrumentation cost.

Code instrumentation is still a very common approach as it depends less on the target’s integrated

tracing capabilities. SEGGER’s SystemView is an example of a profiler for embedded targets. As

we briefly discussed in the previous chapter, we need to use SEGGER’s SystemView and RTT

libraries on the target to enable trace generation. In the following, you can see data generated

by SystemView:

Chapter 3 75

Figure 3.11 – SystemView

In Figure 3.11, we see the names of functions from instrumented firmware, including minimum and

maximum running time. Profiling code can help with the optimization of time-critical sections

of firmware, enabling us to ensure the system’s timing requirements.

Summary
In this chapter, we discovered the available tools for C++ development in the Embedded domain.

There is a variety of available development environments and compilers. While commercial

solutions come with guaranteed support and have functional safety editions of their tools, free

tools are also common and can even be qualified if needed.

Static analyzers can help in avoiding common programming issues and ensure safety guidelines

compliances. By using unit tests, we can validate the functionality of our firmware, and profilers

can help with detecting bottlenecks, measuring WCET, and ensuring timing requirements.

In the next chapter, we will create a development environment for C++ for embedded applications

using selected free tools.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

4
Setting Up the Development
Environment for a C++
Embedded Project

In the previous chapter, we explored the embedded tools ecosystem and reviewed the most widely

used tools in the industry. Now, we’ll set requirements for a modern embedded development

environment and each of its components. Then, we’ll set up our development environment for

running the examples that will be provided in the remainder of this book.

One of the major selling points of integrated environments is their ease of use. They provide you

with everything you need through simple installation steps. Customized environments, on the

other hand, require all components to be installed individually, including all the dependencies

for each component. It’s important to ensure reproducible builds and a reliable debugging

environment, so containerizing customized environments is of great importance.

You’ll be provided with a Docker container for the development environment that we’ll be using

in this book, but we’ll analyze all of its components individually. Understanding the tools that

we use in our daily work is necessary to comprehend and control the processes behind them.

Setting Up the Development Environment for a C++ Embedded Project78

In this chapter, we’re going to cover the following main topics:

•	 Requirements for a modern software development environment

•	 Containerized development environment

•	 Containerized development environment and Visual Studio Code

Technical requirements
For this chapter, you will need to have Docker installed (https://www.docker.com/). Please

follow the installation instructions provided for your specific operating system. This chapter will

guide you through the basic steps for downloading and running a container with a preconfigured

development environment. For more advanced Docker usage, please refer to the official Docker

documentation available on their website.

The code from this chapter is available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter04).

Requirements for a modern software development
environment
Firmware development is no different than any other form of software development and the

tools we use are crucial for effective work. To make this book and the examples accessible as

much as possible, the first requirement we’ll set is to use free tools. The compiler is the basis and

the most important part of every development requirement, so let’s define the requirements and

choose a compiler for our needs.

Compiler
Since we’re exploring modern C++, we’ll require compiler support for the C++23 standard. The

latest version of ARM GNU Toolchain (based on GCC) is 13.2; it supports C++23 and is free. It’s

also the most commonly used free compiler toolchain for ARM development, making it a perfect

fit for our compiler.

ARM GNU Toolchain comes with C and C++ compilers, GNU Debugger (GDB), which we’ll use

for debugging, and other useful tools, such as objcopy, objdump, size, and more, and can be

downloaded from https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads.

The architecture that we need for Arm Cortex-M is arm-none-eabi.

https://www.docker.com/).
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter04).
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter04).
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads.

Chapter 4 79

ARM GNU Toolchain for arm-none-eabi is available for all common host architectures:

•	 GNU/Linux x86_64 and AArch64 host architectures

•	 Windows x86 host architecture only (compatible with x86_64)

•	 macOS x86_64 and Apple silicon

Compiling a single file or few files is as simple as running a few commands in the terminal, but

building even the simplest embedded projects involves the following steps:

1.	 Compile all C and C++ source files, the file that contains the main function, and at least

several files from Hardware Abstraction Layer (HAL). You’ll learn more about HAL in

Chapter 12.

2.	 Set up compiler include paths.

3.	 Set up compiler C and C++ flags.

4.	 Set up compiler define macros.

5.	 Compile the startup assembly script.

6.	 Set up linker options, including the linker script, static libraries, CPU architecture and

instruction set, and standard library options.

Upon doing this, we must convert the ELF file into other formats that are commonly used by

flashing programs, such as bin and hex.

Running all of these tasks manually in the terminal would be a tedious process, so the next

requirement for our development environment is build automation. The first candidate for build

automation is the make utility. It’s a common tool that’s used for automating huge amounts of

software projects across different industries. It would be a good fit for the task, but it’s an old

tool with odd syntax. However, we can use CMake, a more flexible tool with more modern syntax

that can generate Makefiles for us.

Build automation
CMake isn’t an actual build automation tool, but it generates files for other automation tools, such

as the make utility. It’s cross-platform, free, and open source software for the build automation

process, which involves testing, packaging, and installing software. It does so by using a compiler-

independent method.

Setting Up the Development Environment for a C++ Embedded Project80

We’ll use CMake to help us generate targets for the make utility that will do the following:

•	 Configure source files, including paths and linker settings to build ELF files

•	 Convert ELF files into hex and binary formats

•	 Start the simulator and load it with the generated ELF file

We’ll use build automation not only to build the firmware but also to start the simulator that

will run the firmware.

Simulator
To make this book accessible to a wide audience, we’ll be using a simulator to run the examples

that have been compiled for the ARM Cortex M target. Renode (https://github.com/renode/

renode) is an open source simulating framework with good support for ARM targets.

Renode allows you to run simulations with multiple targets and simulate wireless and wired

connections between them. We’ll use it in a simple scenario that involves running simulations

on a single target. Renode can also start a GDB server, allowing you to connect to it and debug

the target.

We’ll integrate simulation execution and debugging, as well as compiler and build automation,

using the highly configurable Visual Studio Code.

Code editor
Visual Studio Code is a modern and flexible code editor. It provides us with all the extensions we

need to integrate all our tools into a single environment. We’ll install the following extensions

in Visual Studio Code:

•	 C/C++: This extension provides syntax highlighting, code autocompletion, and code

navigation

•	 Cortex-Debug: This extension allows debugging to be performed via GDB

•	 CS 128 Clang-Tidy: This extension integrates clang-tidy into Visual Studio Code

•	 Dev Containers: This extension attaches to running a container and uses it for development

purposes

We’ll base our development environment on a Docker container. Visual Studio Code will attach

to that container and use it.

https://github.com/renode/renode)
https://github.com/renode/renode)

Chapter 4 81

Containerized development environment
The Visual Studio Code Dev Containers extension allows Visual Studio Code to attach to a running

Docker container and use all the tools inside it that have been installed. To use this feature, we

need to build a container.

We’ll use Docker to build a container with the following tools:

•	 ARM GNU Toolchain version 13.2

•	 CMake and the make utility

•	 Renode version 1.14

Make sure you’ve installed Docker on your host machine by following the instructions provided

on the official website (https://docs.docker.com).

You can find the Dockerfile that will be used to build the container in this book’s GitHub repository

(https://github.com/PacktPublishing/Cpp-in-Embedded-Systems), in the Chapter04 folder.

There’s also an image that you can download from Docker Hub (https://hub.docker.com/).

You can pull it using the following command:

$ docker pull mahmutbegovic/cpp_in_embedded_systems:latest

Make sure that the Docker daemon has been started by following the instructions for your

platform; they’re available on the official website. After downloading the image, start Docker

using the following command:

$ docker run -d -it --name dev_env mahmutbegovic/cpp_in_embedded_systems

This will start the Docker container in detached and interactive mode. If you’ve already created A

Docker container using the docker run command, you need to start it by running the following

command:

$ docker start dev_env

To access the bash of the started container, we can use the following command:

$ docker exec -it dev_env /bin/bash

https://docs.docker.com)
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems)
https://hub.docker.com/).

Setting Up the Development Environment for a C++ Embedded Project82

As shown in the following screenshot, we can run various commands to ensure the compiler,

debugger, simulator, and other tools have been installed in the container:

Figure 4.1 – Development environment container bash

Figure 4.1 shows the expected outputs from the commands we used to check the versions of the

tools that we’ve installed.

We can use the running container as a self-contained environment. Let’s start by cloning the

project GitHub repository (https://github.com/PacktPublishing/Cpp-in-Embedded-Systems):

$ git clone https://github.com/PacktPublishing/Cpp-in-Embedded-Systems.git

Once you’ve done this, go to the Chapter04/bare folder. This folder contains the Hello, World!

example firmware for STM32F072 that we’ll run in Renode. The project is organized into the

following folders:

•	 app: Contains the business layer code, including main.cpp

•	 hal: Contains the HAL C++ code

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems):

Chapter 4 83

•	 platform: Contains platform-specific code, including the ST-provided HAL layer in C and

the CMSIS, startup, and linker scripts

•	 renode_scripts: Contains Renode simulator scripts

In the project folder, you’ll also see CMakeLists.txt, a CMake file that we’ll use to specify how

the firmware is built. Let’s learn how to use CMake with the help of an example.

Building the Hello, World! program using CMake
We can use CMake to specify a toolchain, source files, compiler include paths, and compiler flags.

The first thing we must do in a CMake file is specify the CMake version that’s in use, as shown

in the following line:

cmake_minimum_required(VERSION 3.13)

CMake is a powerful tool that allows us to write highly flexible build files. We can write toolchain

details in separate files and include them in the main project file, which would allow us to reuse

them for different architectures. However, in our example, we have the toolchain details in the

main CMake file. The following lines specify various toolchain components:

set(CMAKE_C_COMPILER “arm-none-eabi-gcc”)

set(CMAKE_CXX_COMPILER “arm-none-eabi-g++”)

set(CMAKE_ASM_COMPILER “arm-none-eabi-gcc”)

Using the CMAKE_C_COMPILER, CMAKE_CXX_COMPILER, and CMAKE_ASM_COMPILER CMake variables,

we specify paths for the C, C++, and assembler compilers, respectively. We need to use all three

since our project contains ST-provided HAL written in C, our C++ code, and an assembly startup

script.

Now, we must specify various compiler options and preprocessor macros by running the following

lines in our CMakeLists.txt file:

set(CDEFS “-DUSE_HAL_DRIVER -DSTM32F072xB”)

set(MCU “-mcpu=cortex-m0 -mthumb”)

set(COMMON_FLAGS “${MCU} ${CDEFS} -fdata-sections -ffunction-sections
-Wno-address-of-packed-member -Wall -Wextra -Wno-unused-parameter”)

set(CMAKE_C_FLAGS “${COMMON_FLAGS}”)

set(CMAKE_CXX_FLAGS “${COMMON_FLAGS} -Wno-register -fno-exceptions -fno-

rtti -fno-threadsafe-statics”)

Setting Up the Development Environment for a C++ Embedded Project84

Here, we set the USE_HAL_DRIVER and STM32F072xB compile-time macros, which are used by ST’s

HAL. Then, we set some compiler flags that are used for both C and C++ files:

•	 -mcpu=cortex-m0 and -mthumb: Architecture-specific flags.

•	 -fdata-sections: This option tells the compiler to place data items in their own sections

in the resulting objectfile. This can be useful for optimization purposes (removing unused

sections).

•	 -ffunction-sections: Similar to -fdata-sections, but for functions. Each function gets

its own section, allowing the linker to potentially discard unused functions.

•	 -Wno-address-of-packed-member: Suppresses warnings related to taking the address of

a packed member of a structure.

•	 -Wall: Enables all the common warning messages recommended for normal operation.

•	 -Wextra: Enables extra warning flags that aren’t enabled by -Wall.

•	 -Wno-unused-parameter: Disables warnings about unused parameters in functions.

Then, we set the C++-specific compiler flags:

•	 -Wno-register: Disables warnings about the use of the register keyword, which is

deprecated in modern C++ but might be used in legacy code

•	 -fno-exceptions: Disables support for exceptions in C++

•	 -fno-rtti: Disables Run-Time Type Information (RTTI)

•	 -fno-threadsafe-statics: Prevents the compiler from using extra code to ensure that

static local variables are initialized in a thread-safe way

The next part of our CMake file is project-specific: we must declare a new project, give it a name,

enable the languages we want to use, and specify a CMake target, source files, and linker options.

This is our basic setup compiler setup for a C++ (mixed with C) project:

project(bare VERSION 1.0.6)

enable_language(C CXX ASM)

set(CMAKE_CXX_STANDARD 17)

set(CMAKE_CXX_STANDARD_REQUIRED True)

global include directories

include_directories(

 ${CMAKE_SOURCE_DIR}/platform/inc

 ${CMAKE_SOURCE_DIR}/platform/CMSIS/Device/ST/STM32F0xx/Include

Chapter 4 85

 ${CMAKE_SOURCE_DIR}/platform/CMSIS/Include

 ${CMAKE_SOURCE_DIR}/platform/STM32F0xx_HAL_Driver/Inc

 ${CMAKE_SOURCE_DIR}/app/inc

 ${CMAKE_SOURCE_DIR}/hal/uart/inc

 ${CMAKE_SOURCE_DIR}/hal/inc

)

set(EXECUTABLE ${PROJECT_NAME}.elf)

add_executable(

 ${EXECUTABLE}

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c

 platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c

 platform/startup_stm32f072xb.s

 platform/src/stm32f0xx_hal_msp.c

 platform/src/stm32f0xx_it.c

 platform/src/system_stm32f0xx.c

 app/src/main.cpp

 hal/uart/src/uart_stm32.cpp

)

In the preceding CMake code, we have TARGET. This represents an entity that’s being built by a

CMake, be it the entire firmware (an executable file) or a static library. In our case, the target is the

entire firmware, and the target name is created using the project name and .elf suffix, meaning

CMake will create a bare.elf target for us.

The remaining step is to specify linker options using the following lines:

target_link_options(

 ${EXECUTABLE}

 PUBLIC

 -T${CMAKE_SOURCE_DIR}/platform/STM32F072C8Tx_FLASH.ld

 -mcpu=cortex-m0

 -mthumb

 -specs=nano.specs

 -Wl,--no-warn-rwx-segments

 -Wl,-Map=${PROJECT_NAME}.map,--cref

 -Wl,--gc-sections)

Setting Up the Development Environment for a C++ Embedded Project86

Here, we specify the linker script to be used – that is, STM32F072C8Tx_FLASH.ld – set a target

CPU and instruction set, and specify the new-lib nano system library and map file to be created.

Now, let’s build the firmware using CMake.

Building a firmware using CMake
Here, we’ll create a build folder and configure the build in Debug mode using the following

commands:

$ cd Cpp-in-Embedded-Systems/Chapter04/bare/

$ mkdir build && cd build

$ cmake .. -DCMAKE_BUILD_TYPE=Debug

If you list the files in the build folder using ls –l, you’ll see that CMake generated Makefile,

which is used to build the firmware. Let’s run it to build the firmware:

$ make -j4

You should see the following output:

Figure 4.2 – Building the firmware

Figure 4.2 shows the output of building the firmware. We can run the resulting ELF file, bare.elf,

in Renode using the following command:

$ make run_in_renode

Chapter 4 87

This will start the simulator using the stm32f072.resc Renode script from the renode_scripts

folder. The script will create a new Renode machine using the STM32F072 target architecture and

load it with the bare.elf file. We’ll see the following as part of the terminal output:

Figure 4.3 – Running firmware in Renode

Figure 4.3 shows the output of the simulation running in Renode in console mode with GUI

disabled. To stop the simulation, type q and press Enter.

Keep in mind that if you stop or reset the Docker container, all the changes, including the cloned

GitHub repository, will be lost. To prevent this from happening, you need to save them using the

docker commit command.

At this point, we have a pretty development environment contained in a Docker container. However,

to fully utilize it, we must connect it to Visual Studio Code.

Containerized development environment and Visual
Studio Code
To start, install Visual Studio Code (https://code.visualstudio.com/). Once you’ve done this,

go to Extensions and search for and install the following extensions:

•	 C/C++

•	 Cortex-Debug

•	 CS 128 Clang-Tidy

•	 Dev Containers

https://code.visualstudio.com/)

Setting Up the Development Environment for a C++ Embedded Project88

Once you’ve done this, open View| Command Palette (Ctrl + Shift + P), find Dev Containers:

Attach to Running Container, and select dev_env. This should open a new Visual Studio Code

window where the container’s name is in the bottom left bar:

Figure 4.4 – Visual Studio Code attached to a running container

Figure 4.4 shows that Visual Studio Code was successfully attached to the running container.

Now, let’s open the project folder at /workspace/Cpp-in-Embedded-Systems/Chapter04/bare.

Open main.cpp in the EXPLORER view and set a breakpoint on line 23, as shown in the following

screenshot:

Figure 4.5 – Setting a breakpoint in Visual Studio Code

Chapter 4 89

After setting a breakpoint, as shown in Figure 4.5, select Run| Start Debugging (F5). This will

do the following:

•	 Configure the project in debug mode

•	 Start the simulator and load ELF

•	 Connect the GDB client to the GDB server running in the simulator

•	 Allow you to debug the target running in the simulator

If everything has been set up correctly, the program flow will stop on line 23, and you’ll see the

following output:

Figure 4.6 – Visual Studio Code program flow

Figure 4.6 shows that the program flow stopped on line 23. We can switch to the TERMINAL

view to see the output from Renode. Renode is in console mode, and it will also display UART.

Let’s switch to the TERMINAL view and hit Continue (F5). You should see the following output:

Setting Up the Development Environment for a C++ Embedded Project90

Figure 4.7 – Visual Studio Code Renode output

In Figure 4.7, we can see the Renode output in Visual Studio Code’s TERMINAL view. To be able

to debug assembly files, we need to do the following in Visual Studio Code:

1.	 Go to File|Preferences|Settings.

2.	 Search for Allow Breakpoints Everywhere and select the relevant checkbox.

Now, we can set a breakpoint in platform/startup_stm32f072xb.s on line 87, stop the debugging

session, and run it again. The program flow should stop, as shown here:

Figure 4.8 – Visual Studio Code assembly debugging

Chapter 4 91

In Figure 4.8, we can see that the program flow executes the SystemInit function on line 87 of

the assembly startup script, before the main function. If we use Step Into (F11), the program flow

will enter the SystemInit function and Visual Studio Code will open platform/src/system_

stm32f0xx.c file. If you keep moving using Step Over (F10), you’ll eventually enter the main

function. This shows us that main isn’t the first function to be called.

Note that Reset_Handler from startup_stm32f072xb.s is the entry point of the firmware. This

is defined in the linker script (platform/STM32F072C8Tx_FLASH.ld). It does the following:

•	 Initializes the stack pointer: It sets the initial stack pointer from the end of the stack

(_estack).

•	 Copies data: It copies the initialization values from flash memory to SRAM for the data

section, which ensures that initialized global/static variables are set up correctly.

•	 Zeroes BSS: It clears the BSS section by setting it to zero, which is required for uninitialized

global/static variables.

•	 Calls SystemInit: The SystemInit function is used to set the default system clock (system

clock source, PLL multiplier and divider factors, AHB/APBx prescalers, and flash settings).

•	 Calls __libc_init_array: The __libc_init_array function is used to initialize the static

constructors in a C++ program or to run initialization functions in C programs.

•	 Calls main: This operation concludes the activities of the startup script and transfers

program flow to the main function.

With our modern development environment now fully set up, we’re ready to dive into learning

C++ for embedded systems. The Renode simulator allows us to run, test, and debug our firmware

efficiently, eliminating the need for physical hardware in the initial stages of development. This

provides a flexible and efficient solution for embedded system learning and testing.

Summary
In this chapter, we defined the components of our development environment for C++ in embedded

systems. We went through all of its components using a Docker container, which we connected

to Visual Studio Code to enable a seamless development experience and debugging.

We also set up compiler flags using CMake, ran the firmware using the Renode simulator, and

learned how to set up our C and C++ runtime environment by going through the relevant assembly

startup script using a debugger.

In the next chapter, we’ll use the development environment we created in this chapter to learn

more about classes in C++.

Part 2
C++ Fundamentals

After the introduction to C++ in embedded development, the book shifts focus to covering C++

fundamentals for newcomers and readers with limited prior experience. This part delves into core

language features such as classes, including inheritance and runtime polymorphism, along with

other fundamental concepts. It also explores the various error handling mechanisms available

in C++, including the use of exceptions.

This part has the following chapters:

•	 Chapter 5, Classes – Building Blocks of C++ Applications

•	 Chapter 6, Beyond Classes – Fundamental C++ Concepts

•	 Chapter 7, Strengthening Firmware – Practical C++ Error Handling Methods

5
Classes – Building Blocks of
C++ Applications

Classes in C++ are means of organizing code into logical units. They allow us to structure data

and functions that perform operations on that data in blueprints. These blueprints can be used to

build instances of the classes, known as objects. We can initialize objects with data, manipulate

them by calling functions or methods on them, store them in containers, or pass their references

to objects of other classes to make the interaction between different parts of a system.

Classes are the basic building blocks of C++ applications. They help us organize code in units with

isolated responsibility reflecting dependencies and interactions with other parts of the system.

They can be combined or extended, allowing us to reuse their functionality and add additional

capabilities. We use them to make abstractions of different parts of an embedded system, including

low-level components such as Universal Asynchronous Receiver/Transmitter (UART) drivers

and libraries or business logic components such as a cellular modem library.

The goal of this chapter is to delve into C++ classes and learn how we can use them to write better

code. In this chapter, we’re going to cover the following main topics:

•	 Encapsulation

•	 Storage duration and initialization

•	 Inheritance and dynamic polymorphism

Classes – Building Blocks of C++ Applications96

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using a lot of modern C++ features make sure to select C++23 standard,

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter05).

Encapsulation
Encapsulation is a programming concept that organizes code into units that contain both data

and functions that operate on that data. It is not strictly related to Object-Oriented Programming

(OOP) and is often used in other programming paradigms. Encapsulation allows us to decouple

code into units with single responsibilities, making the code easier to reason about, improving

readability, and facilitating maintenance.

In terms of OOP, encapsulation can also refer to hiding an object’s members or restricting access

to these members from the outside. In C++, this can be achieved using access specifiers. C++ has

the following specifiers:

•	 Public

•	 Private

•	 Protected

Public and private are the most commonly used specifiers. They give us the ability to control

the interface of the class, that is, to control which class members are available to the users of a

class. The following example demonstrates how to define a class with public and private access

sections, demonstrating the concept of encapsulation:

#include <cstdint>

class uart {

public:

 uart(std::uint32_t baud = 9600): baudrate_(baud) {}

 void init() {

 write_brr(calculate_uartdiv());

 }

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter05)
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter05)

Chapter 5 97

private:

 std::uint32_t baudrate_;

 std::uint8_t calculate_uartdiv() {

 return baudrate_ / 32000;

 }

 void write_brr(std::uint8_t) {}

};

int main () {

 uart uart1(115200);

 uart1.init();

 return 0;

}

In this example, the uart class has public and private access sections. Let’s go through the code

step by step:

•	 The public section includes a constructor that initializes the baudrate_ private member

variable

•	 We also have an init method in the public section, in which we write a value to a Bit Rate

Register (BRR), which is specific to the STM32 platform, using the write_brr private

method

•	 The value written to the BRR register is calculated in the calculate_uartdiv private

method

As we can see, methods with a public access specifier within the uart class can use private member

variables and methods. However, if we tried to use write_brr on the uart1 object, as in uart1.

write_brr(5), the compilation of the program would fail.

The private access specifier allows us to hide methods and data from the user of our class (in this

case, the main function). This helps us define a clear interface for our classes in C++. By controlling

which methods a user of the class can use, we are not only protecting the class but also the user

from unwanted behavior.

This example serves the purpose of explaining access specifiers in C++, but let’s also use it to

explain the init method. Why do we need it if we have a constructor?

Classes – Building Blocks of C++ Applications98

The purpose of init is to allow us to fully control the initialization of hardware. The object may

also be constructed as a global or static variable. The initialization of static and global objects is

done before reaching the main function and initializing hardware. That is why some kind of init

method is common in classes in embedded projects. Using it, we can ensure that all hardware

peripherals are initialized in the correct order.

The default access specifier for classes in C++ is private, so we could write the definition of the

uart class from the previous example as follows:

class uart {

 std::uint32_t baudrate_;

 std::uint8_t calculate_uartdiv();

 void write_brr(std::uint8_t);

public:

 uart(std::uint32_t baud = 9600);

 void init();

};

We chose to explicitly define the private access section. We put it after the public section, as

publicly accessible members are the interface for our class, and when you read code and a class

definition, the first thing you want to see is the interface. You want to see how to interact with

the class and which methods are part of the public interface that you can use.

The only data member we have in this example is baudrate_. It is private, and the only option

for a user of the uart class to set it up is through the constructor. It is a common practice for data

members that we want to expose to the public to define setter and getter methods.

Setters and getters
In the uart class, we could define setters and getters for baudrate_ members as follows:

 std::uint32_t get_baudrate() const{

 return baudrate_;

 }

 void set_baudrate(baudrate) {

 baudrate_ = baudrate;

 }

Chapter 5 99

Now, this would allow us to set and get the baudrate value from the public interface, but these

trivial setters and getters do not add any value to our interface. They are just exposing the baudrate_

member. It would be the same as if we put it under the public access specifier. Setters and getters

should serve a clear purpose. For example, a setter can include validation logic, as follows:

 void set_baudrate(baudrate) {

 if (baudrate <= c_max_baudrate) {

 baudrate_ = baudrate;

 } else {

 baudrate = c_max_baudrate;

 }

 }

In the modified setter, we are making a sanity check of the value to be set and setting the private

member only if it makes sense to do so, else setting it to the maximum baudrate (c_max_baudrate)

supported in our system. This is just an example; it probably doesn’t make sense to change the

baudrate after the UART initialization.

Exposing data members through setters and getters in some sense breaks encapsulation. The idea

of encapsulation is to hide the implementation details, and data members are implementation

details. Therefore, setters and especially getters should be used sparingly and only when they

serve a meaningful purpose.

We can use classes in C++ to encapsulate only functionality, without data, or data that is commonly

shared with all users of a class. For that, we can use static methods.

Static methods
Static methods are C++ methods declared with static keywords, and they are accessible without

object instantiation. In the uart class example, besides the constructor, we have the init method,

which is part of the public interface. We use it by calling this method on an object we previously

created using a single argument constructor by providing it with the baudrate. We could also

design the uart class as a type that has all static methods and use it as follows:

#include <cstdint>

class uart {

public:

 static void init(std::uint32_t baudrate) {

 write_brr(calculate_uartdiv(baudrate));

Classes – Building Blocks of C++ Applications100

 }

private:

 static std::uint8_t calculate_uartdiv(std::uint32_t baudrate) {

 return baudrate / 32000;

 }

 static void write_brr(std::uint8_t) {}

};

int main () {

 uart::init(115200);

 return 0;

}

As you can see, we removed the single argument constructor and declared all methods as static. We

also removed the baudrate_ private data member and passed it directly from the init method to

the calculate_uartdiv method. We now have a type that we can use without object instantiation.

We call the init method by using the class name followed by a double colon and the method name,

as shown in the main function. It is worth noting that static methods can only use static data

members and other static functions from a class as non-static members require the instantiation

of an object.

We can group functions in C++ in a common unit by using namespaces. However, grouping them

into a type is useful as we can pass types as template arguments. We will discuss namespaces

and templates later in this book to better understand the benefits of this approach. Namespaces

will be discussed in Chapter 6 and templates in Chapter 8.

In C++, we can also use the struct keyword to define a type. The default access for struct members

is public. Historically, structs were used for compatibility with C, so one could write a header

file for a library that is used in both C and C++ programs. In this case, the struct we would share

between C and C++ programs could only have common data types and couldn’t have methods

as members.

Structs
Structs are commonly used in C++ for types that only have data members that we want to make

publicly available to users. They are mostly identical to classes, with a difference being in the

default access level, which is public for structs.

Chapter 5 101

Here is an example of a struct that only has data members:

struct accelerometer_data {

 std::uint32_t x;

 std::uint32_t y;

 std::uint32_t z;

};

accelerometer_data could be produced by a sensor class, stored in a ring_buffer class, and

consumed by a sensor_fusion class. The members of the accelerometer_data class are values

from the x, y, and z axes, and they are publicly available to users of this class.

In this case, we use the accelerometer_data struct only as a data holder, and we implement the

behavior related to this data in other places. This is just an example. Structuring data in simple

structs versus using classes with data and complex behavior is a design choice and it depends

on the exact application.

Structs are also used to group functions into types. They are usually all declared as static and

made publicly available to users. Using a struct instead of a class is convenient in this use case

as the default access specifier is public and it also reflects our intent as a struct is usually used

when all members are made public.

Besides the public and private access specifiers, there is also the protected specifier in C++. The

protected specifier is related to inheritance and will be explained later in this chapter.

Let us now move on to constructors and the initialization of variables and objects in C++. Object

initialization is an important task and failing to do it properly can cause problems in programs.

We will discuss different options for object initialization and analyze potential pitfalls and how

to avoid them.

Storage duration and initialization
C++ objects with automatic storage duration are initialized upon declaration and destroyed

when exiting the variable scope. Objects can also have a static storage duration. Data members

of objects can also have static storage specifiers, and there are rules for the initialization of such

members. We will first go through non-static member initialization.

Classes – Building Blocks of C++ Applications102

Non-static member initialization
There are different ways to initialize non-static class members. The first thing that comes to

mind when we discuss initialization and C++ is constructors. While constructors are powerful

C++ features that allow us to have great control over the initialization, let us start with default

member initializers.

Default member initializers
As of C++11, it is possible to set a default value for a member directly in a class definition, as follows:

class my_class{

 int a = 4;

 int *ptr = nullptr;

}

This simple code snippet would fail to compile if we were to compile it with any pre-C++11

standard. The default member initializers allow us to set a default value for class members in a

class definition, which improves readability and saves us from setting the same member variable

if we have multiple constructors. This is particularly useful for setting default values for pointers.

If we didn’t use the default initializer for ptr, it would be loaded with some random value from

memory. Dereferencing such a pointer would result in reading from or writing to a random location,

potentially leading to a serious fault. This hypothetical situation would be detected by a compiler

or a static analyzer as they would report the usage of an uninitialized value, which is undefined

behavior. Still, this shows the importance of initializing member variables with default values,

and a default member initializer is an option for this task.

Constructors and member initializer lists
Constructors are nameless methods in class definition that can’t be called explicitly. They are

invoked upon the object initialization. A constructor that can be invoked with no arguments is

called the default constructor. We already saw one in the uart class example:

 uart(std::uint32_t baud = 9600): baudrate_(baud) {

 // empty constructor body

 }

Even though this constructor has a parameter, we used the default argument that will be provided

to the constructor if it is called with no arguments. If no argument is provided at the call site, the

default value of 9600 will be used for the baud argument.

Chapter 5 103

We use the following syntax when we want to use the default constructor:

 uart uart1;

This is also called default initialization, and it is performed when the object is declared with no

initializer. Please note that there are no parentheses as this would cause syntax ambiguity and

would be interpreted by the compiler as a function declaration.

 uart uart1();

The preceding line would be interpreted by the compiler as the declaration of a function named

uart1 that returns the object of the uart class and accepts no arguments. This is the reason we

are not using parentheses when using the default constructor.

As our uart class constructor can also accept an argument, we can use direct initialization syntax

and provide the constructor with an argument, as follows:

 uart uart1(115200);

This will call the uart class constructor and provide it with a value of 115200 for the baud argument.

While we have explained nuances related to the syntax of the default constructor, we still need

to explain the initialization of the baudrate_ member variable. In this case, we are using the

member initializer list. It is specified after the colon character and before the opening brace of

the compound statement as baudrate_(baud). In our case, we have only one item in the member

initializer list; if there are more, they are delimited with a comma, as in the following example:

class sensor {

public:

 sensor(uart &u, std::uint32_t read_interval):

 uart_(u),

 read_interval_(read_interval) {}

private:

 uart &uart_;

 const std::uint32_t read_interval_;

};

int main() {

 uart uart1;

 sensor sensor1(uart1, 500);

 return 0;

}

Classes – Building Blocks of C++ Applications104

In the preceding code, we are initializing a reference to uart and the read_interval_ unsigned

integer in the member initializer list in the sensor constructor.

The important thing to notice is the reference to an object of the uart class. References in C++ are

similar to pointers in C; that is, they point to an already-created object. However, they need to be

initialized when declared and they can’t be reassigned to point to another object. References and

const-qualified members must be initialized using a member initializer list.

Constructors can have no or many parameters. If a constructor has one parameter and is declared

without the explicit specifier, it is called a converting constructor.

Converting constructors and explicit specifiers
Converting constructors allow the compiler to make an implicit conversion from the type of

its argument to the type of its class. To better understand this, let’s take a look at the following

example:

#include <cstdio>

#include <student>

struct uart {

 uart(std::uint32_t baud = 9600): baudrate_(baud) {}

 std::uint32_t baudrate_;

};

void uart_consumer(uart u) {

 printf("Uart baudrate is %d\r\n", u.baudrate_);

}

int main() {

 uart uart1;

 uart_consumer(uart1);

 uart_consumer(115200);

 return 0;

}

Chapter 5 105

The interesting part of this example is the call to the uart_consumer function with the 115200

argument. The uart_consumer function expects the object of the uart class as an argument,

but due to rules of implicit conversion and the existing converting constructor, the compiler

constructs an object of the uart class using 115200 as an argument, resulting in the following

output of the program:

Uart baudrate is 9600

Uart baudrate is 115200

Implicit conversion can be unsafe, and it is often unwanted. To prevent it, we can declare a

constructor using an explicit specifier, as follows:

 explicit uart(std::uint32_t baud = 9600): baudrate_(baud) {}

Compiling the preceding example with an explicit constructor will result in a compiler error:

<source>:19:19: error: could not convert '115200' from 'int' to 'uart'

 19 | uart_consumer(115200);

By declaring a constructor as explicit, we can be sure that no user of our class will create a situation

with potential implicit conversion, which may lead to unwanted behavior in our program. But

what if we want to prevent calls to our constructor using the float type? It may not be a good

example, but you can imagine a constructor expecting a uint8_t type and someone calling it

with a uint32_t argument.

We can delete specific constructors, which will result in failed compilation. We can do it using

the following syntax in the class declaration:

 uart(float) = delete;

Calling the constructor with a float type will result in the following compile error:

<source>:12:25: error: use of deleted function 'uart::uart(float)'

 12 | uart uart1(100000.0f);

We can also use brace list initialization, which narrows down the conversion and prevents the

float-to-integer conversion. We can use it as follows:

 uart uart1{100000.0f};

Classes – Building Blocks of C++ Applications106

This call would result in the following compile error:

<source>:11:25: error: narrowing conversion of '1.0e+5f' from 'float' to
'uint8_t' {aka 'unsigned char'} [-Wnarrowing]

 11 | uart uart1{100000.0f};

The list initialization limits the implicit conversion and helps with detecting problems at compile

time.

Class data members can be declared using the static keyword, and there are special rules for

initializing them.

Static member initialization
Static members are not tied to the objects of a class or struct. They are variables with static storage

duration, and they can be accessed by any object of a class. Let’s go through a simple example to

better understand static members and how we initialize them:

#include <cstdio>

struct object_counter {

 static int cnt;

 object_counter() {

 cnt++;

 }

 ~object_counter() {

 cnt--;

 }

};

int object_counter::cnt = 0;

int main() {

 {

 object_counter obj1;

 object_counter obj2;

 object_counter obj3;

 printf("Number of existing objects in this scope is: %d\r\n",

 object_counter::cnt);

 }

Chapter 5 107

 printf("Number of existing objects in this scope is: %d\r\n",

 object_counter::cnt);

 return 0;

}

In this example, we have a simple object_counter struct. The struct has one static data member,

the cnt integer. In the constructor, we are incrementing this counter variable, and in the destructor,

we are decrementing it. In the main function, we are creating three object_counter objects in

an unnamed scope.

When the program flow exits the unnamed scope, destructors will be called. We are printing

the number of existing objects both inside the scope and after leaving it. Inside the unnamed

scope, the cnt value should be equal to 3, as we created three objects, and when we exit it, and

destructors decrement the cnt variable, it should be 0. The following is the output of the example:

Number of existing objects in this scope is: 3

Number of existing objects in this scope is: 0

The output shows that the behavior of the cnt static variable is as we predicted. In this case, we

declared a static variable in the class declaration, but we defined it using the following line:

int object_counter::cnt = 0;

With the C++17 standard, it is possible to declare a static variable using an inline specifier inside

the struct (or class) definition and provide it with the initializer, as follows:

struct object_counter {

 inline static int cnt = 0;

 ...

};

This makes the code more concise, easier to use as we don’t need to define the variable outside

the class definition, and easier to read.

We covered the basics of classes in C++, including access specifiers, initializing methods, and

constructors. Now, we will see how we can reuse classes using inheritance and dynamic

polymorphism.

Classes – Building Blocks of C++ Applications108

Inheritance and dynamic polymorphism
In C++, we can expand the functionality of a class without modifying it with inheritance.

Inheritance is an example of establishing a hierarchical relationship between classes; for example,

ADXL345 is an accelerometer. Let us go through a trivial example that demonstrates inheritance

in C++:

#include <cstdio>

class A {

public:

 void method_1() {

 printf("Class A, method1\r\n");

 }

 void method_2() {

 printf("Class A, method2\r\n");

 }

protected:

 void method_protected() {

 printf("Class A, method_protected\r\n");

 }

};

class B : public A{

public:

 void method_1() {

 printf("Class B, method1\r\n");

 }

 void method_3() {

 printf("Class B, method3\r\n");

 A::method_2();

 A::method_protected();

 }

};

int main() {

Chapter 5 109

 B b;

 b.method_1();

 b.method_2();

 b.method_3();

 printf("-----------------\r\n");

 A &a = b;

 a.method_1();

 a.method_2();

 return 0;

}

In this example, class B inherits private and protected members from class A. class A is the

base class, and class B is derived from it. The derived class has access to public and protected

members of the base class. In the main function, we create an object of class B, and we call the

method_1, method_2, and method_3 methods. The output of this part of the code is shown here:

Class B, method1

Class A, method2

Class B, method3

Class A, method2

Class A, method_protected

In the first line of the main function, we see that the call to the method_1 function on object b

executes method_1 defined in class B even though it is derived from class A, and class A has

also defined method_1. This is called static binding as the decision to call method_1 is defined in

class A and is made by the compiler.

An object of the derived class B contains an object of the base class A. If we call method_2 on

object b, the compiler will find no definition in class B, but as class B inherits from class A, the

compiler will call method_2 on object a, which is a part of object b.

In method_3, we see that we can call methods of the base class from the derived class. We can also

see that we can call protected methods of the base class. This is one of the use cases of private

access specifiers; it allows access to derived classes.

Classes – Building Blocks of C++ Applications110

We can assign the object of the derived class to a reference of the base class. We could also do the

same for a pointer. Here is the result of calls of methods made on the reference:

Class A, method1

Class A, method2

Calling method_1 on a reference of the base class will result in a call to method_1 defined in class

A. This is another instance of static binding in action. But what if we wanted that a call on a base

class reference or pointer to result in executing a function on the derived class? And why would

we want this? Let’s first address the how. C++ provides a mechanism of dynamic binding through

virtual functions.

Virtual functions
In our example, we assign a reference of type A& to an object of class B. If we want calls to

method_1 on this reference (A& a) to execute the method_1 function defined in class B, we can

declare method_1 as a virtual function in class A, as follows:

class A {

public:

 virtual void method_1() {

 printf("Class A, method1\r\n");

 }

...

};

Now, the call to method_1 on the reference of class A, bound to the object of class B, will result

in a call to method_1 defined in class B, as we can see in the output:

Class B, method1

Class A, method2

Here, we see the output of the method_1 call matches the definition of this method from class

B. We say that class B is overriding method_1 from class A, and there is a special notion for

this, as follows:

class B: public A {

public:

 void method_1() override {

 printf("Class B, method1\r\n");

 }

Chapter 5 111

...

};

The override keyword makes the compiler aware of our intention of overriding a virtual method

from the base class. If the method we are overriding is not declared virtual, the compiler will

raise an error.

Virtual functions in C++ are usually implemented using virtual tables. This is the work that a

compiler does for us. It creates a virtual table that stores pointers for every virtual function, which

points to the overridden implementation.

Virtual function implementation
Every class that overrides a virtual function has a virtual table. You can think of it as a hidden

table of function pointers. Every object of a class has a pointer to this table. This pointer is used

at runtime to access a table and find the correct function to be called on the object. Let us slightly

modify our class A and class B to better understand this. The following is the code of the

modified class A and class B:

class A {

public:

 void method_1() virtual{

 printf("Class A, method1\r\n");

 }

 void method_2() virtual{

 printf("Class A, method2\r\n");

 }

};

class B : public A{

public:

 void method_2() override{

 printf("Class B, method2\r\n");

 }

 };

We modified class A and class B so that class A has two virtual methods, method_1 and

method_2. class B only overrides method_2. The compiler will generate a virtual table for class

B and a pointer that every object of class B will hold. The virtual pointer points to the generated

virtual table.

Classes – Building Blocks of C++ Applications112

This can be visualized as follows:

Figure 5.1 – Virtual table

Figure 5.1 depicts a possible implementation of virtual functions in C++ using virtual tables and

virtual pointers. If we call method_2 on a reference to an object of class B, it will follow the virtual

pointer to the virtual table and select the function pointer that points to the implementation

of method_2 in class B, that is, the overridden virtual function. This mechanism happens at

runtime. There is a layer of indirection to get to the overridden function, which results in space

and time overhead.

In C++, we can define a virtual function to be a pure virtual function. If a class has a pure virtual

function, it is called an abstract class, and it can’t be instantiated. Derived classes must override

pure virtual functions, or they are also abstract classes. Let’s go through the following code

example:

class A {

public:

 virtual void method_1() = 0;

};

class B : public A{

};

int main() {

 B b;

 return 0;

}

Chapter 5 113

This program will fail to compile as class B didn’t override the method_1 virtual method from

class A. Abstract classes shift the responsibility of the implementation of certain behaviors

(methods) to derived classes. Classes that have all virtual methods are called interfaces.

Inheritance defines a hierarchical relationship between classes, and we can say that class B is

class A, just as a cat is an animal. We can represent this relationship in a Unified Modeling

Language (UML) diagram.

UML class diagrams
UML diagrams are used to describe software components. If they describe the relationship between

classes, they are called UML class diagrams. One such diagram is shown in the following figure:

Figure 5.2 – UML diagram of class A and class B’s relationship

Figure 5.2 depicts a UML class diagram visualizing the hierarchical relationship between A and B.

The line connecting B and A with a hollow, unfilled triangular arrowhead pointing to A means B

is A. This UML diagram also shows methods available in both classes.

UML diagrams are useful for describing design patterns, and we will use them in this book to help

us visualize the relationship between software components in code examples.

We have learned what inheritance is and how we can use it with virtual functions to achieve

dynamic binding. Let’s get back to the question of why we need these mechanisms and how we

can use them to create better software. The mechanisms we learned in this chapter provide the

means for dynamic (runtime) polymorphism.

Classes – Building Blocks of C++ Applications114

Dynamic polymorphism
Polymorphism is a mechanism that enables a single interface for different types. It can be static

or dynamic. Dynamic polymorphism in C++ is achieved through inheritance and virtual functions.

This type of polymorphism is also called subtyping, as it treats subtypes or derived classes through

the interface based on the base class.

Polymorphism allows us to use a single interface for different implementations. Let us go

through an example of the library for GSM modems. GSM modems usually communicate with

the host microcontroller through the UART interface. A microcontroller may have multiple UART

peripherals, such as UART and Low-Power Universal Asynchronous Receiver/Transmitter

(LPUART) on STM32. We may also want to use the library on different microcontrollers.

We can define a common interface for different UART implementations on different platforms

and use this interface in our GSM library. An implementation of UART will be provided by the

platform on which we use the GSM library, and it will implement the common UART interface.

We can use a UML class diagram to visualize our library design, as in the following figure:

Figure 5.3 – UML diagram of GSM library and UART interface

Chapter 5 115

In Figure 5.3, we see the relationship between the gsm_lib, uart, and uart_stm32 classes. GSM

library functionality is implemented in the gsm_lib class, which uses the uart interface. The

uart interface is implemented by the uart_stm32 class. The functionality of the GSM library is

complex, but let’s go through a very simplified code example just to demonstrate the relationship

between these three classes and how they work together. The following is a simplified example:

#include

#include <cstdio>

#include <cstdint>

class uart {

public:

 virtual void init(std::uint32_t baudrate) = 0;

 virtual void write(std::span<const char> data) = 0;

};

class uart_stm32 : public uart{

public:

 void init(std::uint32_t baudrate = 9600) override {

 printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

 }

 void write(std::span<const char> data) override {

 printf("uart_stm32::write: ");

 for(auto ch: data) {

 putc(ch, stdout);

 }

 }

};

class gsm_lib{

 public:

 gsm_lib(uart &u) : uart_(u) {}

 void init() {

 printf("gsm_lib::init: sending AT command\r\n");

 uart_.write("AT");

 }

 private:

 uart &uart_;

};

int main() {

 uart_stm32 uart_stm32_obj;

Classes – Building Blocks of C++ Applications116

 uart_stm32_obj.init(115200);

 gsm_lib gsm(uart_stm32_obj);

 gsm.init();

 return 0;

}

In this code example, we see that the uart class has two pure virtual functions, which makes it an

interface class. This interface is inherited and implemented by the uart_stm32 class. In the main

function, we create an object of the uart_stm32 class, whose reference is passed to the constructor

of the gsm_lib class, where it is used to initialize a private member reference to the uart interface.

You can also run this program in a simulator environment, which we covered in the previous

chapter. It is available in the Chapter05/gsm_lib folder.

The design of the GSM library using the UART interface allows us to have a flexible library that we

can use on different platforms. This design also allows us to debug the communication between

the library and GSM modem by providing it with a UART implementation that will serve as a tap,

redirecting reads and writes and simultaneously logging them.

Summary
In this chapter, we covered the basics of classes in C++. We learned about member access specifiers,

different ways of initializing objects, and inheritance. We also got to know virtual functions in

more detail and learned how to use them for dynamic polymorphism.

In the next chapter, we will talk more about other basic concepts in C++, such as namespaces,

function overloading, and the standard library.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

6
Beyond Classes – Fundamental
C++ Concepts

Historically, C++ started as C with classes, making classes one of the first concepts for developers

with a C background to learn. In the previous chapter, we covered classes in detail, and before

proceeding with more advanced concepts, we will cover other fundamental C++ concepts that

make it so much more than C with classes.

Before we move on to more advanced topics, it’s important to explore other fundamental concepts

that make C++ distinct. In this chapter, we’re going to cover the following main topics:

•	 Namespaces

•	 Function overloading

•	 Interoperability with C

•	 References

•	 Standard library containers and algorithms

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using modern C++ features make sure to select C++23 standard, by

adding -std=c++23 in compiler options box.

https://godbolt.org/
https://godbolt.org/

Beyond Classes – Fundamental C++ Concepts118

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects

the output and generated assembly. The examples are available at GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06).

Namespaces
Namespaces in C++ are used as scope specifiers for accessing type names, functions, variables,

and so on. They allow us to more easily differentiate types and function names in large code bases

that use many software components and where there are often similar identifiers.

In C, we usually add a prefix to types and functions to make it easier to differentiate, for example:

typedef struct hal_uart_stm32{

 UART_HandleTypeDef huart_;

 USART_TypeDef *instance_;

} hal_uart_stm32;

void hal_init();

uint32_t hal_get_ms();

In C++, we can use namespaces instead of C-style identifier prefixes to organize code in logical

groups, as shown in the following example:

namespace hal {

void init();

std::uint32_t tick_count;

std::uint32_t get_ms() {

 return tick_count;

}

class uart_stm32 {

private:

 UART_HandleTypeDef huart_;

 USART_TypeDef *instance_;

};

};

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06

Chapter 6 119

All members of the hal namespace are accessible unqualified from within the namespace.

To access identifiers from the hal namespace, in code outside of it, we use the namespace as a

qualifier followed by scope resolution operator (::), as shown in the following example:

hal::init();

std::uint32_t time_now = hal::get_ms();

In this example, beside the hal namespace, we also see the std namespace, which we used in

previous examples. C++ standard library types and functions are declared in the std namespace.

We can use the using directive to access an identifier without qualifiers, as shown in the follow-

ing example:

using std::array;

array<int, 4> arr;

The using directive can also be used for the entire namespace, as shown in the following example:

using namespace std;

array<int, 4> arr;

vector<int> vec;

It is recommended to use using directive sparingly, especially with std, using it for a limited

scope, or even better, to bring in individual identifiers only.

The same namespace can be used across different header files to declare identifiers. For example,

std::vector is declared in vector.h, and std::array is declared in array.h header files. This

allows us to organize code from different headers that logically belong to the same group in a

namespace.

Functions and types that are not declared within an explicit namespace are part of a global name-

space. It is a good practice to organize all code in namespaces. The only function that can’t be de-

clared within a namespace and must be in a global namespace is main. To access the identifier from

the global namespace, we use the scope resolution operator, as shown in the following example:

const int ret_val = 0;

int main() {

 return ::ret_val;

}

Beyond Classes – Fundamental C++ Concepts120

The line return ::ret_val; uses the scope resolution operator, ::, without specifying a

namespace. This means it refers to the global namespace. So, ::ret_val accesses the ret_val

variable defined outside of any function or class—that is, at the global scope.

Unnamed namespaces
A namespace can be declared without the name qualifier. This allows us to declare functions and

types that are local to the translation unit they are declared in. In the following example, we can

see an example of an unnamed namespace:

namespace {

constexpr std::size_t c_max_retries;

std::size_t counter;

};

In the code, we have an unnamed namespace with a few variables declared in it. They have

internal linkage, meaning they cannot be accessed by code from other translation units. We can

achieve the same effect both in C and C++ by using the static storage specifier.

Nested namespaces
Namespaces can also be nested. We can have a namespace within a namespace, as shown in the

following example:

namespace sensors {

namespace environmental {

class temperature {

};

class humidity {

};

};

namespace indoor_air_quality{

class c02{

};

class pm2_5{

};

};

};

Chapter 6 121

In this example, we have organized sensors in namespaces. We have a top-level namespace,

sensors, which has two namespaces: environmental and indoor_air_quality. C++17 standard

allows us to write namespaces, as shown in the following example:

namespace sensors::environmental {

class temperature {

};

class humidity {

};

};

Namespaces are a good way to make the code more readable, as they allow us to keep identifiers

short, without C-style prefixes.

Function overloading
In the previous chapter, when we discussed inheritance, we mentioned static binding. We saw

that we can have the same function names for functions that belong to different classes. However,

we can also have the same function names for different function parameters, as shown in the

following example:

#include <cstdio>

void print(int a) {

 printf("Int %d\r\n", a);

}

void print(float a) {

 printf("Float %2.f\r\n", a);

}

int main() {

 print(2);

 print(2.f);

 return 0;

}

Beyond Classes – Fundamental C++ Concepts122

In this example, we have two print functions. One of them has an int as a parameter and the

second one has a float. On the call site, the compiler will pick a print function based on the

arguments passed to the function call.

Functions with the same names within the same scope are called overloaded functions. Instead

of having two different names, such as print_int and print_float, we can use the same name

for both these functions and let the compiler decide which function to call.

To distinguish between the two overloaded print functions – one accepting an int parame-

ter and the other a float – the compiler employs a technique called name mangling. Name

mangling modifies function names by encoding additional information, such as parameter types,

into them. This ensures that each overloaded function has a unique symbol in the compiled code.

If we examine the assembly output of the previous example, we can observe these mangled names:

_Z5printi:

 mov r1, r0

 ldr r0, .L2

 b printf

_Z5printf:

 vcvt.f64.f32 d16, s0

 ldr r0, .L5

 vmov r2, r3, d16

 b printf

We see that the compiler assigned _Z5printi and _Z5printf labels to print functions with

int and float parameters respectively. This allows it to dispatch function calls according to

argument matching.

Overloaded functions can have a different number of arguments. Return types cannot be used

for function overloading. Two functions with the same name and same arguments cannot have

different return types. The following code would result in a compile error:

int print(int a);

void print(int a);

This code would be treated by the compiler as a function redeclaration and would result in an error.

Function overloading is a basic but powerful feature of C++ that provides a mechanism for com-

pile-time or static polymorphism.

Chapter 6 123

Interoperability with C
Code examples from previous chapters that you were able to run in a Renode simulator are

using both C++ and C code. We used vendor provided HAL library and Common Microcontroller

Software Interface Standard (CMSIS) by Arm, both written in C and contained in the platform

folder.

If you take a look at the CMakeLists.txt file and the add_executable function in it, you will see

listed C files from the platform folder and just a few C++ files. Building a project will provide the

following console output:

[7%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal.c.o

[15%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_cortex.c.o

[23%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_gpio.c.o

[30%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_rcc.c.o

[38%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_uart.c.o

[46%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_uart_ex.c.o

[53%] Building ASM object CMakeFiles/bare.elf.dir/platform/startup_
stm32f072xb.s.o

[61%] Building C object CMakeFiles/bare.elf.dir/platform/src/stm32f0xx_
hal_msp.c.o

[69%] Building C object CMakeFiles/bare.elf.dir/platform/src/stm32f0xx_
it.c.o

[76%] Building C object CMakeFiles/bare.elf.dir/platform/src/system_
stm32f0xx.c.o

[84%] Building CXX object CMakeFiles/bare.elf.dir/app/src/main.cpp.o

[92%] Building CXX object CMakeFiles/bare.elf.dir/hal/uart/src/uart_
stm32.cpp.o

[100%] Linking CXX executable bare.elf

Every C and C++ file is treated as a translation unit and built separately by C and C++ compilers

respectively. After compilation, both C and C++ object files are linked into a single ELF file.

Beyond Classes – Fundamental C++ Concepts124

External and Language Linkage in C++
Variables and functions that can be referred to from other translation units have external linkage.

This allows them to be linked with code in other files provided that the compiler has access to

declarations. They also have a property called language linkage. This property allows linking C++

with C code. C language linkage in C++ is declared using the following syntax:

extern "C" {

void c_func();

}

Declaration with C language linkage will be linked according to C language linkage conventions,

preventing name mangling (among other things) to ensure proper linking with code compiled

within a C translation unit.

C standard library in C++
C++ wraps the C standard library and provides header files with the same name as the C language

version but with a c prefix and no extension. For example, the C++ equivalent for the C language

header file <stdlib.h> is <cstdlib>.

In GCC, implementation C++ wrappers include C standard library headers; for example, <cstdio>

includes <stdio.h>. If you dive into <stdio.h>, you can see that it guards function declarations

with __BEGIN_DECLS and __END_DECLS macros. Here’s the definition of these macros:

/* C++ needs to know that types and declarations are C, not C++. */

#ifdef __cplusplus

define __BEGIN_DECLS extern "C" {

define __END_DECLS }

#else

define __BEGIN_DECLS

define __END_DECLS

#endif

Here, we can see that standard C library headers take care of C++ compatibility by adding a

language linkage specifier if a C++ compiler is used. This practice is also used in many HAL im-

plementations provided by microcontroller vendors. If you open any C header file in platform/

STM32F0xx_HAL_Driver/Inc, you will see that declarations are guarded with a C language linkage

specifier when they are accessed by the C++ compiler, as shown here:

#ifdef __cplusplus

extern "C" {

Chapter 6 125

#endif

// Declarations

#ifdef __cplusplus

}

#endif

C libraries are often used by C++ programs, especially in the embedded domain, so it is always

a good idea to guard them with a language linkage specifier. If we are using a C library in a C++

program in which headers are not guarded internally, we can guard the headers at the include

site, as shown here:

extern "C" {

#include "c_library.h"

}

The language linkage specifier for C language ensures proper linking of C++ code that is using C

code, which is often a case in embedded projects.

References
In the previous chapter, we briefly mentioned references without explaining them in detail.

References are object aliases; that is, they refer to objects and as such they must be immediately

initialized. They are not objects, so there are no pointers to references or arrays of references.

There are two different types of references in C++: lvalue and rvalue references.

Value categories
C++ expressions have either lvalue or rvalue value categories. There is a more detailed division of

value categories, but we will stay with this simple one which has a historical origin.

Lvalues usually appear on the left side of the assignment expression, but this is not always the

case. Lvalues have an address that the program can access. Here are some examples of lvalues:

void bar();

int a = 42; // a is lvalue

int b = a; // a can also appear on the right side

int * p = &a; // pointer p is lvalue

void(*bar_ptr)() = bar; // func pointer bar_ptr is lvalue

Beyond Classes – Fundamental C++ Concepts126

Rvalues usually appear on the right side of the assignment expression. Examples are literals,

function calls that do not return references, and built-in operator calls. We can think of them as

temporary values. Some rvalues are shown in the following example:

int a = 42; // 42 is rvalue

int b = a + 16; // a + 16 is rvalue

std::size_t size = sizeof(int); // sizeof(int) is rvalue

Here is another, full example to help you better understand rvalues:

#include <cstdio>

struct my_struct {

 int a_;

 my_struct() : a_(0) {}

 my_struct(int a) : a_(a) {}

};

int main() {

 printf("a_ = %d\r\n", my_struct().a_);

 printf("a_ = %d\r\n", (my_struct()=my_struct(16)).a_);

 return 0;

}

In the preceding example, we can see the my_struct() rvalue expression on the left side of the

assignment operator. The output of the example is as follows:

a_ = 0

a_ = 16

In the first printf call, we make a call to the constructor of my_struct, which returns a

temporary object, and we access the a_ member. In the next line, we have the following

expression: my_struct()=my_struct(16). On the left side of this expression, we have a call to

the default constructor, which returns a temporary object. Then we assign the result of the call

to a constructor that accepts int to a temporary object on the left side, which will copy one

temporary object to the other one.

Chapter 6 127

Lvalue references
Lvalue references are used as aliases for existing objects. They can also be const-qualified. We

declare them by adding & to type names. The following code demonstrates the usage of lvalue

references:

#include <cstdio>

int main() {

 int a = 42;

 int& a_ref = a;

 const int& a_const_ref = a;

 printf("a = %d\r\n", a);

 a_ref = 16;

 printf("a = %d\r\n", a);

 // a_const_ref = 16; compiler error

 return 0;

}

As shown in the example, we can manipulate the object using the reference. In the case of a

constant reference, any attempts to change the value will result in a compiler error.

Rvalue references
Rvalue references are used to extend the lifetime of temporary rvalues. We declare them using

&& next to the type name. Here are example usages of rvalue references:

int&& a = 42;

int b = 0;

// int&& b_ref = b; compiler error

int&& b_ref = b + 10; // ok, b + 10 is rvalue

Rvalue references cannot be bound to lvalues. Attempting to do so will result in a compiler error.

Rvalue references are important for resource management, and they are used in move semantics,

which allow resources to be moved from one object to another.

Beyond Classes – Fundamental C++ Concepts128

If we take a look at the documentation for the push_back method of std::vector, we will see

two declarations:

void push_back(const T& value);

void push_back(T&& value);

The first declaration is used to initialize a new vector member by copying value. The second

declaration with rvalue reference will move value, meaning that a new vector member will take

ownership of dynamically allocated resources from the value object. Let’s take a look at the

following example to understand the basics of move semantics:

#include <string>

#include <vector>

#include <cstdio>

int main()

{

 std::string str = "Hello world, this is move semantics demo!!!";

 printf("str.data address is %p\r\n", (void*)str.data());

 std::vector<std::string> v;

 v.push_back(str);

 printf("str after copy is <%s>\r\n", str.data());

 v.push_back(std::move(str));

 //v.push_back(static_cast<std::string&&>(str));

 printf("str after move is <%s>\r\n", str.data());

 for(const auto & s:v) {

 printf("s is <%s>\r\n", s.data());

 printf("s.data address is %p\r\n", (void*)s.data());

 }

 return 0;

}

Chapter 6 129

In this example, we have two calls to the push_back method of std::vector<std::string>. The

first call, v.push_back(str);, performs a copy of str into the vector. After this operation, the

original str remains unchanged, which is confirmed by the output:

str.data address is 0x84c2b0

str after copy is <Hello world, this is move semantics demo!!!>

The second call, v.push_back(std::move(str));, uses std::move to cast str to an rvalue

reference. This signals to the compiler that the resources of str can be moved rather than copied.

As a result, the internal data of str is transferred to the new string in the vector, and str is left in

a valid but unspecified state, often becoming empty:

str after move is <>

s is <Hello world, this is move semantics demo!!!>

s.data address is 0x84d330

s is <Hello world, this is move semantics demo!!!>

s.data address is 0x84c2b0

In the preceding output, we are also printing addresses of the string’s underlying character arrays

using s.data() and str.data().Here’s what’s happening:

•	 The original str has its data at address 0x84c2b0

•	 After copying str into the vector, the first element, v[0], has its own copy of the data at a

different address (0x84d330), confirming that a deep copy was made

After the move, the second element, v[1], in the vector now points to the original data address,

0x84c2b0. This indicates that the internal data of str was moved into v[1] without copying.

This is just a glimpse into move semantics; there is much more to it, but as it is used mostly for

managing dynamically allocated resources, we will not cover it in more detail.

Standard library containers and algorithms
We have already discussed some of the containers from the C++ library, such as std::vector

and std::array, in previous chapters. As std::vector relies on dynamic memory allocation,

std::array is usually the container of choice in embedded applications.

Array
Arrays from the standard library allocate a contiguous block of memory on the stack. We can

consider an array as a simple wrapper of a C-style array that contains the size of the array inside

the type. It is a templated type that is instantiated with an underlying data type and size.

Beyond Classes – Fundamental C++ Concepts130

We can access members of the array using a method that will throw an exception if indexed with

an out-of-bounds index. This makes it a safer option than a C-style array as it allows us to catch

out-of-bounds access runtime errors and handle them. If exceptions are disabled, we can set a

global terminate handler with our functionality. We had the opportunity to see this in Chapter 2

of this book when we were discussing exceptions.

We can use std:array to create a vector-like container that we can use with container adaptors

such as std::stack or a std::priority queue. We will call our new type fixed_vector. It will

inherit from std::array and implement the push_back, pop_back, empty, and end methods. Here

is an implementation of our new type using an array from the standard library:

template <typename T, size_t S> class fixed_vector : public std::array<T, S>
{

 public:

 void push_back(const T &el) {

 if(cnt_ < S) {

 this->at(cnt_) = el;

 ++cnt_;

 }

 }

 T &back() {

 return this->at(cnt_-1);

 }

 void pop_back() {

 if(cnt_) {

 --cnt_;

 }

 }

 auto end() {

 return std::array<T, S>::begin() + cnt_;

 }

 bool empty() const {

 return cnt_ == 0;

 }

Chapter 6 131

 private:

 size_t cnt_ = 0;

};

Our new type, fixed_vector, exploits the underlying std::array and implements the push_

back function to add elements at the end of the array. If we want to add more elements than is

possible, it will fail silently. This behavior can be adjusted as per the application’s requirements.

It also implements the back method, which returns an lvalue reference to the last element, and

pop_back, which decrements the private member, cnt_, used to keep track of the number of

elements stored in the container.

We can use our new container type, fixed_vector, as an underlying container type for container

adaptors such as stacks and priority queues.

Container adaptors
Stack is a simple Last In-First Out (LIFO) container adaptor, and the priority queue will sort the

elements when inserting them. We can see how to use them with fixed_vector in the following

example:

int main() {

 std::priority_queue<int, fixed_vector<int, 10>> pq;

 pq.push(10);

 pq.push(4);

 pq.push(8);

 pq.push(1);

 pq.push(2);

 printf("Popping elements from priority queue: ");

 while(!pq.empty()) {

 printf("%d ", pq.top());

 pq.pop();

 }

 std::stack<int, fixed_vector<int, 10>> st;

 st.push(10);

Beyond Classes – Fundamental C++ Concepts132

 st.push(4);

 st.push(8);

 st.push(1);

 st.push(2);

 printf("\r\nPopping elements from stack (LIFO): ");

 while(!st.empty()) {

 printf("%d ", st.top());

 st.pop();

 }

 return 0;

}

In this example, we are using fixed_vector to instantiate std::stack and std::priority_queue

templated types. If we run this program, we will get the following output:

Popping elements from priority queue: 10 8 4 2 1

Popping elements from stack (LIFO): 2 1 8 4 10

As you can see from the output, elements in the priority queue are sorted, and those in the stack

are popped by the LIFO principle.

The standard library provides a variety of containers, and we have just scratched the surface of

the possibilities that it provides. It also provides algorithms that operate on containers.

Algorithms
C++ standard library offers a huge set of templated algorithm functions contained in the algorithm

header that play well with different container types. We will go through some of them now.

std::copy and std::copy_if
std::copy and std::copy_if are used to copy elements from one container to another. std::copy_

if also accepts a predicate function that controls whether a member is copied or not, as shown

in the following example:

#include <cstdio>

#include <vector>

#include <array>

#include <algorithm>

Chapter 6 133

#include <numeric>

void print_container(const auto& container) {

 for(auto& elem: container) {

 printf("%d ", elem);

 }

 printf("\r\n");

}

int main() {

 std::array<int, 10> src{0};

 std::array<int, 10> dst{0};

 std::iota(src.begin(), src.end(), 0);

 std::copy_if(src.begin(), src.end(), dst.begin(),[]

 (int x) {return x > 3;});

 print_container(src);

 print_container(dst);

 return 0;

}

In this example, we use std::iota from the numeric header to initialize the src array with incre-

menting values, starting with 0. Then, we copy all elements from the src array to the dst array

that are larger than 3 using std::copy_if.

std::sort
std::sort is used to sort elements in a container. In the following example, we will generate

elements randomly and sort them:

int main() {

 std::array<int, 10> src{0};

 std::random_device rd;

 std::mt19937 gen(rd());

 std::uniform_int_distribution<> distrib(1, 6);

Beyond Classes – Fundamental C++ Concepts134

 auto rand = [&](int x) -> int {

 return distrib(gen);

 };

 std::transform(src.begin(), src.end(), src.begin(), rand);

 print_container(src);

 std::sort(src.begin(), src.end());

 print_container(src);

 return 0;

}

In this example, we populate the src array using std::transform, which applies a rand lambda

to every member of the src array. We used types from the random header to generate random

numbers between 1 and 6. After we populate the array with random numbers, we sort it using

std::sort. A possible output of this program is shown here:

6 6 1 1 6 5 4 4 1 1

1 1 1 1 4 4 5 6 6 6

We first see values in the array before sorting and then applying std::sort. We could have populat-

ed the initial array in a for loop, but we used the opportunity to demonstrate std:transform here.

These were some of the algorithms from the C++ standard library; there are many more that can

be used to effectively solve common tasks in containers.

Summary
In this chapter, we covered C++ fundamentals such as namespaces, function overloading, refer-

ences, and standard library containers and algorithms. We also learned how C interoperability

is implemented and used in C++ programs.

In the next chapter, we will learn about error-handling mechanisms in C++.

7
Strengthening Firmware –
Practical C++ Error Handling
Methods

To ensure the proper functioning of firmware, we must handle errors from vendor-specific code,

libraries that we are using in a project, and our own code. Error codes are standard error-handling

mechanisms in C, and they are also used in C++. However, C++ provides us with other tools, most

notably exceptions that are often avoided in embedded projects due to the large binary

footprint and non-determinism. Still, we will discuss exceptions in C++ in this chapter to show

their benefits in the error-handling process.

Besides exceptions, C++ offers more options for error handling that will also be discussed in this

chapter. The goal of this chapter is to understand potential issues with error codes and see how

to mitigate them in C++.

In this chapter, we’re going to cover the following main topics:

•	 Error codes and asserts

•	 Exceptions

•	 std:: optional and std::expected

Strengthening Firmware – Practical C++ Error Handling Methods136

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using modern C++ features make sure to select C++23 standard, by

adding -std=c++23 in compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects

the output and generated assembly. The examples are available at GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07).

Error codes and asserts
Error codes are a common way of reporting and handling errors in C. They are also still used in

C++. A function that fails reports an error through enumerated codes that are checked by a caller

and handled appropriately. Let us analyze how error codes work from both the caller and the

callee perspective.

A function that returns an error must have a list of errors that are exposed to callers. This list is

maintained through a software life cycle, and it can be subject to changes. Enumerated error codes

can be added, removed, or modified. A caller must be aware of the error codes that the callee is

returning, and it needs to handle them. Or, if it doesn’t know how to handle an error, it should

propagate it further within a call stack.

Let’s observe a simple example of a function that returns an error and analyze the implications

this has for the code using this function:

enum class error {

 Ok,

 Error1,

 Error2,

 Unknown

};

error h() {

 return error::Error1;

}

error g() {

 auto err = h();

 if(err!=error::Ok) {

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07

Chapter 7 137

 if(err == error::Error1) {

 // handle error directly

 }

 else if(err == error::Error2) {

 // propagate this error

 return err;

 }

 else {

 // unknown error

 return error::Unknown;

 }

 }

 return error::Ok;

}

void f() {

 auto err = g();

 if(err==error::Ok) {

 printf("Succes\r\n");

 }

 else {

 // handle errors

 }

}

In the preceding example, the h function returns an error of enum class error. The g function

calls the h function and executes the following steps:

1.	 Checks if h returned an error that is different from error::Ok. This indicates that the h

function didn’t perform its task and there is an error that should be handled.

2.	 If h returned an error, checks whether it is error::Error1. In this case, g knows how to

handle this error and it handles it.

3.	 If h returned error::Error2, g is not capable of handling it, and it forwards it up the call

stack.

4.	 Returns error::Ok to indicate up the call stack that everything went fine.

Function g is called by f, and f also needs to be aware of errors defined in enum class error. It

should handle them or pass them up the stack.

Strengthening Firmware – Practical C++ Error Handling Methods138

Error codes rely on design contracts. The caller must check if the callee returned an error, and

if it did, it needs to handle it or pass it up the call stack. Now, we can identify several potential

problems with this simple approach:

•	 We cannot enforce error handling by a caller. It can just discard the return value.

•	 The caller can forget to handle some of the error cases.

•	 The caller can forget to pass the error up the call stack.

These are serious design flaws that put an extra burden on code development. There is no escape

hatch in case we forget to handle an error somewhere. The program stays in an unknown state

and this potentially leads to unwanted behavior.

We can address the first concern using the nodiscard attribute. It can be used with a function

declaration or enumeration declaration. In our case, we can use it with an enum class error

declaration as follows:

enum class [[nodiscard]] error {

 Ok,

 Error1,

 Error2,

 Unknown

};

When a function returning the enum class error is called, and the return value is discarded, the

compiler is encouraged to raise a warning. If we call the g or h function from our example, GCC

will raise a warning similar to this one:

<source>:48:6: warning: ignoring returned value of type 'error', declared
with attribute 'nodiscard' [-Wunused-result]

If we set up the compiler to treat all warnings as errors, this would break the compilation process

and force us to use the return value in code. Even though the nodiscard attribute is useful and

should be used for similar use cases, it is not a complete solution to our problem. It will enforce

usage of the return value, but the caller may still fail to check the error code for all possible cases

and address it properly.

Almost every application has some types of errors that are unrecoverable and the only thing it

makes sense to do is to log them, display them to a user (if possible), and terminate the program,

as there is no sense in proceeding with such a program state. For these types of errors, we can

use a global error handler, as they are too important to be left open in the wild and potentially

not handled by a caller.

Chapter 7 139

Global error handlers
Global error handlers can be implemented as free functions. They are used system-wide to

address errors that are unrecoverable and when it is necessary to stop the execution of firmware

due to the severity of an error.

Let’s take a look at an example of firmware using an accelerometer. If there are any issues in

I2C communication with the accelerometer, it doesn’t make sense to proceed further with code

execution – the firmware will display a message to the user and terminate:

#include <cstdio>

#include <cstdint>

#include <cstdlib>

int i2c_read(uint8_t *data, size_t len) {

 return 0;

}

namespace error {

 struct i2c_failed{};

 struct spi_failed{};

 void handler(i2c_failed err) {

 printf("I2C error!\r\n");

 exit(1);

 }

 void handler(spi_failed err) {

 printf("SPI error!\r\n");

 exit(1);

 }

};

class accelerometer {

public:

 struct data {

 int16_t x;

 int16_t y;

 int16_t z;

Strengthening Firmware – Practical C++ Error Handling Methods140

 };

 data get_data() {

 uint8_t buff[6];

 if(i2c_read(buff, 6) != 6) {

 error::handler(error::i2c_failed{});

 }

 return data{};

 }

};

int main () {

 accelerometer accel;

 auto data = accel.get_data();

 return 0;

}

In the preceding example, we have an accelerometer class with the get_data method, which

uses the i2c_read function from the vendor-specific HAL in C (let us pretend this is the case).

The i2c_read function returns the number of read bytes. In our example, the return value is

stubbed to 0 so we can simulate the erroneous behavior of the accelerometer (or the I2C bus). In

case i2c_read returns a number different from the requested number of bytes, get_data will

call error::handler.

We implemented an error handler using a tag-dispatching mechanism. We are overloading the

error::handler function with so-called tags, or empty types. In our example, we have two tags,

i2c_failed and spi_failed, and two overloaded error handlers. Tag dispatching has a couple

of advantages over defining error codes with enum:

•	 We need to overload error handlers for every tag that is used in code. Error handlers are

implemented individually for every error type. This adds to the readability of code.

•	 In case we make a call to an error handler that is not overloaded, the compilation will fail,

forcing us to implement it.

In our example, the error handler will print a message using the printf function and make a

call to the exit function, effectively terminating the program. In real-world situations, how we

handle errors depends on the application. For example, for a medical device, if critical operations

become unsafe after an error, we would first attempt to recover from the error.

Chapter 7 141

If recovery failed, the system would enter a critical error state, alert medical personnel, and grace-

fully terminate the treatment operation.

An error on the I2C bus or, more generally, failed communication with external devices must be

handled appropriately through robust error-handling mechanisms.

On the other hand, there are conditions that indicate programming mistakes – situations that

should never occur if the code is correct. These include violations of preconditions, such as input

parameters being out of expected boundaries due to logic errors in the code. Proceeding under

such circumstances could lead to undefined behavior or system instability. To detect these pro-

gramming errors during development, we use asserts.

Asserts
Asserts are primarily used during development to detect programming mistakes by verifying

that certain conditions hold true at specific points in the code. They help identify logical errors

and incorrect assumptions by halting execution when an unexpected condition occurs. A macro

assert is defined in <cassert> in the standard library. It is used to check a logical expression,

and in case the logical expression is false, it prints diagnostic information and calls std::abort,

effectively terminating the program.

To better understand asserts, and how to use them, let us take a look at the following code example:

#include <cassert>

#include <cstdint>

enum class option : std::uint8_t {

 Option1 = 0,

 Option2,

 Option3,

 Last

};

option uint8_to_option(uint8_t num) {

 assert(num < static_cast<uint8_t>(option::Last));

 return static_cast<option>(num);

}

int main() {

 const option opt = uint8_to_option(3);

 return 0;

}

Strengthening Firmware – Practical C++ Error Handling Methods142

In the preceding example, we have defined the option enum class with uint8_t as an underlying

type. We will use it to allow users to select an option over a network interface and we want to make

sure that the conversion from uint8_t to the option enum is always correct. The uint8_to_option

function will assert if the received uint8_t argument is not smaller than option::Last.

In the example, we called uint8_to_option with argument 3, which is not smaller than

option::Last, meaning that the assert macro will print the following diagnostic information

and make a call to std::abort to terminate the program:

assertion "num < static_cast<uint8_t>(option::Last)" failed: file "/home/
amar/projects/Cpp-in-Embedded Systems/Chapter07/error_handling/app/src/
main.cpp", line 21, function: option uint8_to_option(uint8_t)

Now, this is quite a lengthy debug statement. Let’s take a look at the assert macro definition:

#define assert(expr) \

 (static_cast <bool> (expr) \

 ? void (0) \

 : __assert_fail (#expr,

 __ASSERT_FILE, \

 __ASSERT_LINE, \

 __ASSERT_FUNCTION))

We see that the expression is cast to a bool type and that the ternary operator does nothing if

the expression is true, or it makes a call to the __assert_fail function if the expression is false.

The assert macro passes the expression as a string literal, the filename as a string literal, the line

number, and also a function name as a string literal. All these string literals must be stored in the

binary, taking up precious memory.

Asserts can be disabled by defining the NDEBUG macro before including <cassert> as in the fol-

lowing lines:

#define NDEBUG

#include <cassert>

We can also define NDEBUG using the build system. The assert macro will do nothing if NDEBUG

is defined before <cassert> is included. This option is left to be used in case we want to disable

asserts, as they are most commonly used in debug builds, and disabled in production builds. They

should be disabled before the safety-critical software validation.

Chapter 7 143

The assert macro, as implemented in the standard library, is not suitable for embedded systems

as it includes the filename, function name, and assert expression as string literals, which end

up stored in the flash of the embedded target. Moreover, asserts are mostly intended to be used

during debugging, and they are often disabled in production builds. Still, there is a benefit of asserts

enabled in production builds, as they can provide valuable insights for postmortem debugging if

they are implemented to log data when the expression is evaluated as false.

We will examine an alternative approach to logging information using asserts. As we have already

concluded, the default assert macro implementation is not well suited for embedded targets, even

though it contains useful information for debugging: filename, function name, and line number.

Instead of a lengthy string describing an exact location of the assert macro line in our code, we

can simply log a program counter and use the map file and addr2line tool to convert the address

to the exact line. We can see a simple macro definition and a helper function to implement this

in the following code:

void log_pc_and_halt(std::uint32_t pc) {

 printf("Assert at 0x%08lX\r\n", pc);

 while(true) {}

}

#define light_assert(expr) \

 (static_cast<bool> (expr) \

 ? void (0) \

 : log_pc_and_halt(hal::get_pc()) \

)

We have defined a macro named light_assert that, instead of __assert_failed, calling log_pc_

and_halt. It is passing the return value from hal::get_pc as an argument to log_pc_and_halt.

To see this code in action, you can take a look at the example in the Chapter07/error_handling

project.

The project for this chapter is configured so that you can configure it to use different main C++

files and configure which one is going to be used with CMake. Let us start our Docker container

using the following commands:

$ docker start dev_env

$ docker exec -it dev_env /bin/bash

Strengthening Firmware – Practical C++ Error Handling Methods144

This should get us in the Docker terminal. Run ls –l to make sure that the Cpp-in-Embedded-

Systems repo is cloned. If not, clone it using the following command:

$ git clone https://github.com/PacktPublishing/Cpp-in-Embedded-Systems.git

Start Visual Studio Code, attach it to the running container, and open Chapter07/error_handling

project as described in Chapter 4 and run the following commands in the Visual Studio Code

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
assert.cpp

$ cmake --build build --target run_in_renode

The preceding commands will build the firmware using the app/src/main_assert.cpp file and

run it in Renode simulator. You should see similar output to this in the terminal:

14:11:06.6293 [INFO] usart2: [host: 0.31s (+0.31s)|virt: 0s (+0s)] Assert
example

14:11:06.6455 [INFO] usart2: [host: 0.32s (+15.87ms)|virt: 0.11ms
(+0.11ms)] Assert at 0x08000F74

As we can see, the assert evaluated expression to false and printed out the 0x08000F74 program

counter value. We can convert this value to the line from a source file using the following command:

$ arm-none-eabi-addr2line --exe bare.elf 0x08000F74

This will result in the following output:

/workspace/Cpp-in-Embedded-Systems/Chapter07/error_handling/app/src/main_
assert.cpp:30 (discriminator 1)

As you can see, we are able to get the exact line of the source of the assert using this approach and

by logging just 4 bytes of data (address). In this implementation, log_pc_and_halt just print the

address. In production implementations, we can store the address in non-volatile memory and

use it for postmortem debugging.

The hal::get_pc() function is declared with an inline specifier. We use inline as a hint to

the compiler to insert instructions from a function directly to a call site, that is, not to make a

function call. The compiler doesn’t necessarily need to comply with our intentions, and that can

be observed by building this example using the O0 optimization level.

Chapter 7 145

We use asserts to catch programming errors – situations that should never occur if the code is

correct. They are often employed to validate internal assumptions and invariants within criti-

cal functions. The primary purpose of asserts is for debugging; they help developers find and

fix bugs during the development phase. However, as we’ve seen, customized asserts can also

provide valuable insights into production builds for postmortem analysis. While asserts are useful

for detecting programming mistakes during development, they are not a substitute for proper

error handling in production code. Error codes can be cumbersome because they require manual

propagation of errors up the call stack. C++ offers exceptions as a solution to these problems,

providing a structured way to handle errors without cluttering the code with error-checking logic.

Next, we will go over C++ exceptions to better understand the benefits they offer from the

error-handling aspect.

Exceptions
Exceptions in C++ are error-handling mechanisms that are based on the principle of throwing

and catching objects of an arbitrary type. All exceptions that are thrown from the standard library

derive from the std::exception class defined in the <exception> header. We put code that may

throw an exception in the try block, and we define the type of exception we want to catch in the

catch clause, as shown in the following example:

 std::array<int, 4> arr;

 try {

 arr.at(5) = 6;

 }

 catch(std::out_of_range &e) {

 printf("Array out of range!\r\n");

 }

 Exercise for you!

As an exercise, edit CMAKE_C_FLAGS_DEBUG and CMAKE_CXX_FLAGS_DEBUG in

CMakeLists.txt, and instead of Og, use O0. Build and run the program and run the

addr2line utility on the output. To mitigate this concern, you can define a macro

to be used instead of the hal::get_pc() function.

Strengthening Firmware – Practical C++ Error Handling Methods146

In the preceding example, we have defined std::array arr, an array of integers with four mem-

bers. In the try block, we are trying to access an element with index 5, which is clearly out of the

defined range, and the at method will throw the std::out_of_range exception. In order to run

this example, go to the Chapter07/error_handling folder, make sure that the build folder is

deleted, and run the following commands:

$ mkdir build && cd build

$ cmake .. -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_exceptions.
cpp

$ make –j4

$ make run_in_renode

You should see Array out of range! printed in the terminal.

Now, while building the example, you may have noticed that the size of the binary is a whooping

88 KB. What happened?

In order to enable exceptions, besides using the -fexceptions compiler flag, we also had to

disable the nano specs that we used in previous examples. Nano specs define the usage of the C

standard newlib-nano library and size-optimized libstdc++ and libsupc++ libraries. These are

built without exception support and if we use them, any attempt at throwing exceptions will result

in std::abort being called instead. By disabling nano specs, we are using an unoptimized C++

standard library, which results in the 88 KB binary size. A size-optimized standard C++ library

can be built from sources with enabled exceptions, which would help reduce the binary footprint.

If an exception is not caught, std::terminate_handler will be called. We can replace the default

handler using the std::set_terminate function as in the following example:

 std::set_terminate([]() {

 printf("My terminate handler!\r\n");

 while(true){}

 });

In the preceding example, we provided a lambda as a terminate handler. As an exercise, try to

access the array from the previous example with an index that is out of range, but out of a try

block. This should trigger the terminate handler and make a call to the lambda we passed to the

std::set_terminate function.

Chapter 7 147

Exceptions are propagated up the call stack. Let us go through the following example to demon-

strate exception propagation:

template <class T, std::size_t N> struct ring_buffer {

 std::array<T, N> arr;

 std::size_t write_idx = 0;

 void push(T t) {

 arr.at(write_idx++) = t;

 }

};

int main()

{

 ring_buffer<int, 4> rb;

 try {

 for(int i = 0; i < 6; i++) {

 rb.push(i);

 }

 }

 catch(std::out_of_range &e) {

 printf("Ring buffer out of range!\r\n");

 }

 return 0;

}

The preceding example is based on a ring buffer from previous chapters that uses std::array

as an underlying container. In the push method, it doesn’t check the write index, meaning that

the array’s at method will throw an exception if we call the push method more than N times. An

exception is thrown in the push method, where there is no try-catch block, and it gets caught

only in the main function in the catch block.

Strengthening Firmware – Practical C++ Error Handling Methods148

You can run the preceding example in the Renode simulator using the following instructions.

Start Visual Studio Code, attach it to the running container, open Chapter07/error_handling

project as described in Chapter 4, and run the following commands in the Visual Studio Code

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
exceptions.cpp

$ cmake --build build --target run_in_renode

Exception propagation is useful for the type of errors that we don’t want to propagate between

the software layers manually using error codes. However, the problem with exceptions is that

they are not visible from function declarations as is the case with error codes. We need to rely on

good documentation to know which function throws an error and where those errors are handled.

There is a saying that exceptions are used for exceptional errors that are very rare. But what are

exceptional errors? That depends on the library, application, and use case. It is hard to generalize.

A failed read to the accelerometer may be a recoverable error that is solved by resetting it. We

can throw an exception on a failed I2C bus communication, and the upper layer that catches this

error may decide to try resetting the accelerometer.

Failing to control boost voltage regulator output by DAC may also be recoverable, but we may

want to terminate the program as we are implementing a medical device and that may be the best

action possible to prevent any damage to a user. In this case, we want to react as fast as possible

and exception propagation and stack unwinding are probably not desirable so we will rely on a

global handler or asserts instead.

Exceptions come with a price, both in flash and RAM memory consumption, and the execution

time can’t always be guaranteed, which is a problem if we are working with hard real-time sys-

tems. But they also solve the problem of error propagation and enforce error handling. If there is

not a catch clause for a specific type, std::terminate_handler will be called, and the program

will not continue with the execution.

Error codes and exceptions can co-exist, and they often do. Embedded C++ projects often use C

libraries, or legacy C++ code, which often uses error codes. We can benefit from exceptions by

using them for very rare errors, adding additional robustness to our firmware. Still, the decision

of whether to use them is influenced by available memory resources and the type of project we

are working on.

Next, we will cover the C++ std::optional and std::expected template classes, which are used

as return types from functions.

Chapter 7 149

std:: optional and std::expected
C++17 introduced std::optional, a template class that either has a value or has nothing. This

is useful for situations where a function may or may not return a value. To better understand it,

let’s go through the following example:

#include <cstdio>

#include <optional>

struct sensor {

 struct data {

 int x;

 int y;

 };

 static inline bool ret_val = true;

 static std::optional<data> get_data() {

 ret_val = !ret_val;

 if(ret_val) {

 return data{4, 5};

 }

 else {

 return std::nullopt;

 }

 }

};

int main()

{

 const auto get_data_from_main = [] () {

 auto result = sensor::get_data();

 if(result) {

 printf("x = %d, y = %d\r\n", (*result).x, (*result).y);

 }

 else {

 printf("No data!\r\n");

 }

 };

 get_data_from_main();

Strengthening Firmware – Practical C++ Error Handling Methods150

 get_data_from_main();

 return 0;

}

In the preceding example, we have a sensor struct with the get_data method, which returns a

value if some conditions are met. Otherwise, it doesn’t return it. The sensor is not in an erroneous

state, it just doesn’t have data ready yet. For this, we are using std::optional<data> to declare

that the sensor may or may not return the data struct. We used the ret_val bool to simulate

data being ready at every second call of the get_data function.

In the main, we created the get_data_from_main lambda, which makes a call to the sensor’s

get_data. The std::optional<data> return value is converted to a bool in the if statement. If

it is converted to true, it means it holds data, else it holds nothing. We access the data type by

dereferencing the result object.

C++ 23 introduced std::expected<T, E>, a template class that either holds an expected object

of class T or an unexpected object of class E. To understand this better, let us go through the

following example:

#include <cstdio>

#include <expected>

struct ble_light_bulb {

 enum class error {

 disconnected,

 timeout

 };

 struct config {

 int r;

 int g;

 int b;

 };

 bool ret_val;

 std::expected<config, error> get_config() {

 ret_val = !ret_val;

 if(ret_val) {

 return config {10, 20, 30};

 }

 else {

Chapter 7 151

 return std::unexpected(error::timeout);

 }

 }

};

int main()

{

 ble_light_bulb bulb;

 const auto get_config_from_main = [&bulb]() {

 auto result = bulb.get_config();

 if(result.has_value()) {

 auto conf = result.value();

 printf("Config r %d, g %d, b %d\r\n", conf.r, conf.g, conf.b);

 } else {

 auto err = result.error();

 using bulb_error = ble_light_bulb::error;

 if(err == bulb_error::disconnected) {

 printf("The bulb is disconnected!\r\n");

 }

 else if(err == bulb_error::timeout) {

 printf("Timeout!\r\n");

 }

 }

 };

 get_config_from_main();

 get_config_from_main();

 return 0;

}

In the preceding example, we have a ble_light_bulb struct, a BLE (Bluetooth Low Energy) light

bulb, with the get_config method, which reads some config data over the BLE connection from

the bulb. This method returns config, or an error. In main, we defined the get_config_from_main

lambda, which calls get_config on the ble_light_bulb object. We use the has_value method

on the expected returned object to check if it holds an expected value. We use value methods to

access the expected value or the error method to access the error object.

Strengthening Firmware – Practical C++ Error Handling Methods152

You can run the preceding example in the Renode simulator using the following instructions.

Start Visual Studio Code, attach it to the running container, open Chapter07/error_handling

project as described in Chapter 4, and run the following commands in the Visual Studio Code

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
expected.cpp

$ cmake --build build --target run_in_renode

Summary
In this chapter, we analyzed different error-handling strategies in C++. We went through error

codes, global handlers, asserts, exceptions, std::optional, and std::expected. We learned the

pros and cons of each and in which situations it makes sense to apply them.

In the next chapter, we will cover templates in more detail.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

Part 3
C++ Advanced Concepts

Building on the fundamentals, this part introduces more advanced concepts such as templates,

including static polymorphism and compile-time computation. It also guides you through increas-

ing type safety in C++ and writing expressive code using lambdas. These advanced techniques

are taught through practical examples.

This part has the following chapters:

•	 Chapter 8, Building Generic and Reusable Code with Templates

•	 Chapter 9, Improving Type-Safety with Strong Types

•	 Chapter 10, Writing Expressive Code with Lambdas

•	 Chapter 11, Compile-Time Computation

8
Building Generic and Reusable
Code with Templates

We have used class templates in previous examples in this book without explaining them in

detail. You should by now have a basic understanding of templates in C++ and know how to

use template container classes from the standard library to specialize containers with different

underlying types. We have also covered the std::optional and std::expected template classes,

which we can use to handle different return types from functions.

As you have already seen, templates are used heavily in the C++ standard library. They allow us

to implement the same functionality for different types, making our code reusable and generic,

which is one of the strengths of C++. Templates are an extremely complex topic; entire books have

been written on templates and metaprogramming in C++. This chapter will help you understand

templates in C++ in more detail.

In this chapter, we’re going to cover the following main topics:

•	 Template basics

•	 Metaprogramming

•	 Concepts

•	 Compile-time polymorphism

Building Generic and Reusable Code with Templates156

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architec-

ture. This will allow you to see standard output and better observe the code’s behavior. As we are

using modern C++, make sure to select C++23 standard, by adding -std=c++23 in the compiler

options box.

Compiler Explorer makes it easy to try the code, tweak it, and immediately see how it affects the

output and generated assembly code. The examples from this chapter are available on GitHub

(https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter08).

Template basics
One definition of the word “template” is “a gauge, pattern, or mold (such as a thin plate or board)

used as a guide to the form of a piece being made. “ This definition can be applied to templates

in C++.

In C++, templates serve as patterns or molds for functions and classes, allowing the creation of

actual functions and classes. From this perspective, templates are not real functions or types

themselves; rather, they act as guides for generating concrete functions and types. To better

understand this definition, let us take a look at the following code sample:

#include <cstdio>

template<typename T>

T add(T a, T b) {

 return a + b;

}

int main() {

 int result_int = add(1, 4);

 float result_float = add(1.11f, 1.91f);

 printf("result_int = %d\r\n", result_int);

 printf("result_float = %.2f\r\n", result_float);

 return 0;

}

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter08

Chapter 8 157

In this example, we have a template function, add, with the template type parameter T. In the

main function, we see two calls to the add function:

•	 The first one has integers as arguments and a return value stored in result_int

•	 The second one has float arguments and a return value stored in the result_float float

variable

Now, we previously said that template types and functions are not actual types and functions, so

how can we make a call to the template function if it’s not a real function?

Making a call to the template function
In this example, when the compiler sees a call to add a template function, it deduces the template

argument and replaces the template parameter, in this case, type T, with type int in the first call

and float in the second call to add. After argument deduction, the template is instantiated; that

is, the compiler creates two instances of the add function: one with integers as arguments and

one with floats. We can see this in the assembly output of the preceding example shown here:

_Z3addIiET_S0_S0_:

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-4], edi

 mov DWORD PTR [rbp-8], esi

 mov edx, DWORD PTR [rbp-4]

 mov eax, DWORD PTR [rbp-8]

 add eax, edx

 pop rbp

 ret

_Z3addIfET_S0_S0_:

 push rbp

 mov rbp, rsp

 movss DWORD PTR s[rbp-4], xmm0

 movss DWORD PTR [rbp-8], xmm1

 movss xmm0, DWORD PTR [rbp-4]

 addss xmm0, DWORD PTR [rbp-8]

 pop rbp

 ret

Building Generic and Reusable Code with Templates158

In the preceding assembly output, we see there are two instances of the add function: _Z3addIiET_

S0_S0_, accepting integers, and _Z3addIfET_S0_S0_, accepting floats. The compiler instantiated

these two functions from the add template function, after it deduced template arguments on the

call site of this function. This is the basic working principle of templates in C++.

In the example of the add template function, the compiler will instantiate a new function for

every type for which there is a defined operator+. So, what would happen if we tried to call the

add template function on a type for which there is no defined operator+? Let’s take a look at the

following example:

struct point {

 int x;

 int y;

};

int main() {

 point a{1, 2};

 point b{2, 1};

 auto c = add(a, b);

 return 0;

}

In the preceding example, we defined a point struct, for which there is no defined operator+,

and we made a call to the add template function. This will result in a compiler error similar to

the one shown here:

<source>: In instantiation of 'T add(T, T) [with T = point]':

<source>:25:17: required from here

 25 | auto c = add(a, b);

 | ~~~^~~~~~

<source>:6:13: error: no match for 'operator+' (operand types are 'point'
and 'point')

 6 | return a + b;

 | ~~^~~

Chapter 8 159

So, what happened? When the compiler tried to instantiate a function using the add template with

point as type T, the compilation failed due to no match for 'operator+' (operand types are

'point' and 'point'). We can solve this by defining operator+ for the point struct as follows:

struct point {

 int x;

 int y;

 point operator+(const point& other) const {

 return point{x + other.x, y + other.y};

 }

 void print() {

 printf("x = %d, y = %d\r\n", x, y);

 }

};

In the preceding implementation, we defined operator+ for the point struct, and we also defined

the print function, which will help us to print the point. After this change, we can compile the

example successfully.

What if we wanted, for some reason, that add function when used with type point behaves dif-

ferently than just applying the operator+? Let’s say we want to increment both x and y by 1 after

summation. We can use template specialization for this.

Template specialization
Template specialization allows us to provide the compiler with the implementation of a tem-

plate function for a specific type, as in the following example of specializing the add function for

type point:

template<>

point add<point>(point a, point b) {

 return point{a.x+b.x+1, a.y+b.y+1};

}

In this case, when the add function is called with arguments of type point, the compiler skips the

generic template instantiation and uses this specialized version instead. This allows us to custom-

ize the behavior of the function specifically for point objects, adding an extra 1 to each coordinate

when two point instances are added together. Let us take a look at the full main function now:

int main() {

 point a{1, 2};

Building Generic and Reusable Code with Templates160

 point b{2, 1};

 auto c = add(a, b);

 c.print();

 static_assert(std::is_same_v<decltype(c), point>);

 return 0;

}

If we run the example with template specialization from the previous step, we will get the fol-

lowing output:

x = 4, y = 4

The compiler used function specialization for the point type. Template specialization makes tem-

plates a flexible tool, allowing us to provide compilers with custom implementations when needed.

In the preceding example, we can see that for variable c, we used auto as a type specifier. The

auto keyword was introduced in C++11, and when used, the compiler deduces the actual type of

a variable from the initialization expression. In order to confirm that the deduced type of variable

c is point, we used static_assert, which performs compile-time assertion checking.

As the argument of static_assert, we use a type trait from the metaprogramming library,

std::is_same_v, which checks whether two types are identical and evaluates to true if they are.

We determine the type of c using the decltype specifier, which retrieves the type of an expres-

sion at compile time. This allows us to verify that the type deduced for c is indeed point. If this

assertion fails, the compiler will generate an error.

Template metaprogramming
Template metaprogramming involves using templates to write code that generates different

functions, types, and constants at compile time based on the types used in the template arguments.

Template metaprogramming is an advanced technique heavily utilized in modern C++ libraries.

It may be overwhelming, so it is perfectly fine if it appears to be hard to understand. Take this as

merely an introduction and an exploration of this interesting topic.

Let us go back to the example of the add template function. Is there something we can do if we want

to enforce that this template function is used only for arithmetic types such as integers and floats?

<type_traits> header from metaprogramming library provides us with the std::enable_if

template type, which accepts two parameters, a Boolean and a type. If a Boolean is true, the

resulting type will have a public typedef member, type. Let’s take a look at the following example:

Chapter 8 161

#include <type_traits>

template<typename T>

std::enable_if<true, T>::type

add(T a, T b) {

 return a + b;

}

In the preceding example, we used std::enable_if in place of the return type of the add template

function. As we set the Boolean argument to true, it will have a public typedef type, T, meaning

that the return type of the add function template will be T.

We will expand this example using type trait class template std::is_arithmetic<T>, which will

have a public Boolean named value set to true if T is an arithmetic type. The preceding example

will result in the following code:

template<typename T>

std::enable_if<std::is_arithmetic<T>::value, T>::type

add(T a, T b) {

 return a + b;

}

In the preceding example, instead of hardcoding true as the condition for std::enable_if, we

use the std::is_arithmetic<T>::value. Let’s take a look at the main function using this template

function and the point type from the previous example:

int main() {

 auto a = add(1, 2); // OK

 auto b = add(1.1, 2.1); // OK

 point p_a{1, 2};

 point p_b{2, 1};

 auto p_c = add(p_a, p_b); // compile-error

 return 0;

}

If we try to compile this code, the compilation will fail with a lengthy error message containing

the following:

<source>: In function 'int main()':

<source>:30:17: error: no matching function for call to 'add(point&,
point&)'

 30 | auto c = add(p_a, p_b); // compile-error

Building Generic and Reusable Code with Templates162

 | ~~~^~~~~~~~~~

<source>:30:17: note: there is 1 candidate

<source>:19:1: note: candidate 1: 'template<class T> typename std::enable_
if<std::is_arithmetic<_Tp>::value, T>::type add(T, T)'

 19 | add(T a, T b) {

 | ^~~

<source>:19:1: note: template argument deduction/substitution failed:

<source>: In substitution of 'template<class T> typename std::enable_
if<std::is_arithmetic<_Tp>::value, T>::type add(T, T) [with T = point]':

<source>:30:17: required from here

 30 | auto c = add(p_a, p_b); // compile-error

 | ~~~^~~~~~~~~~

<source>:19:1: error: no type named 'type' in 'struct std::enable_
if<false, point>'

 19 | add(T a, T b) {

 | ^~~

The preceding compiler error looks intimidating, and it is hard to read. This is one of those things

that templates are notorious for. Before we tackle this concern, let’s focus on analyzing what

happened in this case.

Template argument deduction/substitution failed as std::is_arithmetic<point>::value re-

sults in false, meaning that the std::enable_if template type will not have a public typedef

type T. Effectively, any attempt at the usage of the add template function in this example with

a type that’s not arithmetic will result in a compiler error, even if operator+ is defined for that

type. We can think of std::enable_if as an enabler or disabler of a template function in C++.

Let’s modify the add template function so that it prints the result of the sum operation. As both in-

tegers and floats are arithmetic types, we need to treat them differently. We could use std::enable_

if and create two template functions using the std::is_integral and std::is_floating_point

type traits as in the following example:

template<typename T>

std::enable_if<std::is_integral<T>::value, T>::type

add(T a, T b) {

 T result = a + b;

 printf("%d + %d = %d\r\n", a, b, result);

Chapter 8 163

 return result;

}

template<typename T>

std::enable_if<std::is_floating_point<T>::value, T>::type

add(T a, T b) {

 T result = a + b;

 printf("%.2f + %.2f = %.2f\r\n", a, b, result);

 return result;

}

As you remember, std::enable_if is a template enabler or disabler, meaning it will enable the

first template function for integer types and print them using printf and the %d format specifier.

Template substitution will fail for the second template function with integer types, but this will

not be treated as an error as there is a valid function candidate for integer arguments from the

first template. This principle is called Subsitution Failure Is Not An Error (SFINAE). For the float-

ing-point types, the first template function will be disabled, but the second one will be enabled.

Now, the example functions we used are very simple, but let’s for a moment pretend that the

add function template is doing a heavy-lifting task and that between integer and floating-point

versions, the only difference is how we print the result. So, if we used two different function tem-

plates, we would copy a lot of the same code. We can avoid this by using constexpr if, which will

enable or disable certain paths in code at compile time. Let us take a look at a modified example:

std::enable_if_t<std::is_arithmetic_v<T>, T>

add(T a, T b) {

 T result = a + b;

 if constexpr (std::is_integral_v<T>) {

 printf("%d + %d = %d\r\n", a, b, result);

 } else if constexpr (std::is_floating_point_v<T>) {

 printf("%.2f + %.2f = %.2f\r\n", a, b, result);

 }

 return a + b;

}

Building Generic and Reusable Code with Templates164

In the preceding example, we used the constexpr if statement to enable certain paths of the

program based on the compile-time evaluation of the std::is_integral_v<T> and std::is_

floating_point_v<T> expressions. constexpr if was introduced in C++17. You can also notice

that we used aliases for type traits as std::enable_if_t<T>, which is equivalent to std::enable_

if<T>::type, and std::is_floating_point_v<T>, which is equivalent to std::is_floating_

point<T>::value.

In this example, we used type traits and std::enable_if to enable the add function template

only for arithmetic types. C++20 introduced concepts, which we can use to put restraints on

template types.

Concepts
Concepts are named sets of template parameter requirements. They are evaluated at compile

time and are used during overload resolution to select the most appropriate function overload;

that is, they are used to determine which function template will be instantiated and compiled.

We will create a concept for arithmetic types and use it in our add template function, as follows:

template<typename T>

concept Arithmetic = std::is_arithmetic_v<T>;

template<Arithmetic T>

T add(T a, T b) {

 T result = a + b;

 if constexpr (std::is_integral_v<T>) {

 printf("%d + %d = %d\r\n", a, b, result);

 } else if constexpr (std::is_floating_point_v<T>) {

 printf("%.2f + %.2f = %.2f\r\n", a, b, result);

 }

 return a + b;

}

In the preceding code, we created the Arithmetic concept and used it in the add function template

to put requirements on the T template type. The add template function is now easier to read. It is

visible from the template declaration that type T must meet the requirements of the Arithmetic

concept, which makes the code easier to read and comprehend.

Chapter 8 165

Concepts not only make the code easier to read but also improve readability of compiler errors.

If we tried to call the function template add on type point, we would now get an error similar to

the following one:

<source>: In function 'int main()':

<source>:41:17: error: no matching function for call to 'add(point&,
point&)'

 41 | auto c = add(p_a, p_b); // compile-error

 | ~~~^~~~~~~~~~

<source>:41:17: note: there is 1 candidate

<source>:22:3: note: candidate 1: 'template<class T> requires
Arithmetic<T> T add(T, T)'

 22 | T add(T a, T b) {

 | ^~~

<source>:22:3: note: template argument deduction/substitution failed:

<source>:22:3: note: constraints not satisfied

<source>: In substitution of 'template<class T> requires Arithmetic<T> T
add(T, T) [with T = point]':

<source>:41:17: required from here

 41 | auto c = add(p_a, p_b); // compile-error

 | ~~~^~~~~~~~~~

<source>:18:9: required for the satisfaction of 'Arithmetic<T>' [with T
= point]

<source>:18:27: note: the expression 'is_arithmetic_v<T> [with T = point]'
evaluated to 'false'

 18 | concept Arithmetic = std::is_arithmetic_v<T>;

 | ~~~~~^~~~~~~~~~~~~~~~~~

The preceding compiler error is way easier to read and understand what happened than the one

we had previously when we didn’t use concepts. We can easily trace the origin of the error to

the fact that constraints imposed by the Arithmetic concept are not satisfied for the point type.

Next, we will move on to discuss compile-time polymorphism and see how we can utilize concepts

to help us enforce strong interfaces.

Building Generic and Reusable Code with Templates166

Compile-time polymorphism
In Chapter 5, we discussed dynamic, or runtime, polymorphism. We used it to define an interface

for uart, which was implemented by the uart_stm32 class. The gsm_lib class has a dependency

on the uart interface only, not on the concrete implementation, which is contained in uart_stm32.

This is called loose coupling and allows us to have portable code for the gsm_lib class.

We can easily supply gsm_lib with another uart interface implementation on a different hard-

ware platform. This principle is called dependency inversion. It says that high-level modules

(classes) shouldn’t depend on low-level modules and that both should depend on abstractions

(interfaces). We can implement this principle by using inheritance and virtual functions in C++.

Virtual functions result in indirection, causing the runtime overhead and increased binary size

needed for their implementation. They allow runtime dispatching of function calls, but they

come with a price. In embedded applications, we usually know all our types, meaning that we can

use templates and overload resolution for the static or compile-time dispatch of function calls.

Using Class Templates for Compile-Time Polymorphism
We can make gsm_lib a class template that has one parameter that we will use for the uart type,

as shown in the following example:

#include

#include <cstdio>

#include <cstdint>

class uart_stm32 {

public:

 void init(std::uint32_t baudrate = 9600) {

 printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

 }

 void write(std::span<const char> data) {

 printf("uart_stm32::write: ");

 for(auto ch: data) {

 putc(ch, stdout);

 }

 }

Chapter 8 167

};

template<typename T>

class gsm_lib{

public:

 gsm_lib(T &u) : uart_(u) {}

 void init() {

 printf("gsm_lib::init: sending AT command\r\n");

 uart_.write("AT");

 }

private:

 T &uart_;

};

int main() {

 uart_stm32 uart_stm32_obj;

 uart_stm32_obj.init(115200);

 gsm_lib gsm(uart_stm32_obj);

 gsm.init();

 return 0;

}

In the preceding example, the compiler will instantiate the gsm_lib template class using the

uart_stm32 class as a template argument. This will result in using a reference to an object of the

uart_stm32 class in the gsm_lib code. We can still easily reuse gsm_lib by using it with a differ-

ent type that provides all the methods needed to compile it. In this example, the type that used

with the gsm_lib class template must provide a write method accepting std::span<char> as

its parameter. But this also means that any type that has such a method will allow us to compile

the code.

Dynamic polymorphism requires interface classes implemented in concrete classes and used in

high-level code. It makes intended behavior of the code clear when reading it. Can we do some-

thing similar using templates? It turns out we can. We can use the curiously recurring template

pattern (CRTP) to implement compile-time subtype polymorphism.

Building Generic and Reusable Code with Templates168

Curiously recurring template pattern (CRTP)
CRTP is a C++ idiom where the derived class uses a template class instantiated with itself as a

base class. Yes, it sounds confusing, so let’s jump into the code to better understand this:

template<typename U>

class uart_interface {

public:

 void init(std::uint32_t baudrate = 9600) {

 static_cast<U*>(this)->initImpl(baudrate);

 }

};

class uart_stm32 : public uart_interface<uart_stm32> {

public:

 void initImpl(std::uint32_t baudrate = 9600) {

 printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

 }

};

The preceding code implements CRTP. The uart_stm32 derived class inherits from the uart_

interface class template instantiated with the uart_stm32 class itself. The base class template

exposes an interface from which it can access the derived class using static_cast on this (pointer

to itself). It provides the init method, which calls initImpl on the object of the uart_stm32 class.

CRTP allows us to define our interface in the base class and implement it in a derived class, similar

to the inheritance mechanism we are using for runtime polymorphism. The remaining part to

ensure that this interface is used in gsm_lib is to create type constraints using concepts, as follows:

template<typename T>

concept TheUart = std::derived_from<T, uart_interface<T>>;

The preceding code is a concept that we will use to restrain types accepted by the gsm_lib class

template. It will accept only types that are derived from the uart_interface class template in-

stantiated by that type itself. The following is the full code example:

#include

#include <cstdio>

#include <cstdint>

Chapter 8 169

template<typename U>

class uart_interface {

public:

 void init(std::uint32_t baudrate = 9600) {

 static_cast<U*>(this)->initImpl(baudrate);

 }

 void write(std::span<const char> data) {

 static_cast<U*>(this)->writeImpl(data);

 }

};

class uart_stm32 : public uart_interface<uart_stm32> {

public:

 void initImpl(std::uint32_t baudrate = 9600) {

 printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

 }

 void writeImpl(std::span<const char> data) {

 printf("uart_stm32::write: ");

 for(auto ch: data) {

 putc(ch, stdout);

 }

 }

};

template<typename T>

concept TheUart = std::derived_from<T, uart_interface<T>>;

template<TheUart T>

class gsm_lib{

public:

 gsm_lib(T &u) : uart_(u) {}

 void init() {

 printf("gsm_lib::init: sending AT command\r\n");

 uart_.write("AT");

 }

private:

 T &uart_;

Building Generic and Reusable Code with Templates170

};

int main() {

 uart_stm32 uart_stm32_obj;

 uart_stm32_obj.init(115200);

 gsm_lib gsm(uart_stm32_obj);

 gsm.init();

 return 0;

}

In the preceding code, we used CRTP to implement compile-time or static subtype polymorphism.

uart_stm32 is a concrete class that depends on the interface defined by the uart_interface class

template. We used the TheUart concept to constrain high-level code in gsm_lib on types derived

from uart_interface. We achieved dependency inversion, and it is clearly defined thanks to

CRTP and concepts.

The major benefit of compile-time polymorphism over inheritance (runtime polymorphism) is

static binding; that is, there are no virtual functions. This comes at the price of template syntax,

which may make the code harder to read and understand.

Summary
In this chapter, we covered template basics, template metaprogramming, concepts, and com-

pile-time polymorphism. While templates are an advanced topic that encompasses many deeper

concepts, this chapter aims to serve as a solid starting point for new learners. By understanding

the fundamentals covered here, you should be well equipped to explore more complex aspects

of templates and leverage their full potential in embedded systems programming.

In the next chapter, we will discuss type safety in C++.

9
Improving Type-Safety with
Strong Types

C++ is a statically typed language, meaning that every expression is assigned a type at a compile

time, either by a developer (in most cases), or deduced by a compiler when using the keyword

auto. Still, this doesn’t make it a type-safe language.

Both C++ and C allow functions with a variable number of arguments (va_arg), or variadic

functions and type casting, and support implicit type conversion. These low-level capabilities

that are associated with the performance of C++ and C are often the source of bugs in programs.

In this chapter, we will cover good practices used to increase type-safety in C++.

Type-safety is an important aspect of a program in safety-critical systems. That’s why safety

coding standards provided by organizations such as MISRA and AUTOSAR restrain the usage of

features that violate type-safety. In this chapter, we’re going to cover the following main topics:

•	 Implicit conversions

•	 Explicit conversions

•	 Strong types

Improving Type-Safety with Strong Types172

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architecture.

This will allow you to see standard output (stdio) results and better observe the code’s behavior.

As we are using a lot of modern C++ features, make sure to select the C++23 standard, by adding

-std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects

the output and generated assembly. Most of the examples can also be run in the Renode simulator

on Arm Cortex-M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter09).

Implicit conversion
When you make a call to a function that expects an integer parameter, but you pass a float as

an argument, the compiler will happily compile the program. Similarly, if you pass an array of

integers to a function that expects a pointer to an integer, the program will also compile. These

scenarios have become so normalized in both C and C++ that they are often taken for granted

without considering what’s happening during the compilation process.

In both described scenarios, the compiler is performing implicit conversions. It converts the

float to an integer in the first scenario and passes a pointer to the first element of the array in the

second scenario, a process known as array-to-pointer decay.

While implicit conversions make the code less verbose and easier to write, they also open the

door to a range of type-safety-related issues. Converting a float to an integer leads to precision

loss, and assuming that an array always behaves like a pointer can lead to misinterpretations of

the array’s bounds, potentially causing buffer overflows or other memory issues.

Implicit conversion is performed in the following cases:

•	 When a function is called with an argument of a type different than the parameter. For

example:

#include <cstdio>

void print_int(int value) {

 printf("value = %d\n", value);

}

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter09
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter09

Chapter 9 173

int main() {

 float pi = 3.14f;

 // int implicitly converts to float

 print_int(pi);

 return 0;

}

•	 When a value specified in a return statement is of a different type than specified by a

function declaration. For example:

int get_int() {

 float pi = 3.14;

 // float implicitly converts to int

 return pi;

}

•	 In expressions with binary operators provided with operands of different arithmetic types.

For example:

#include <cstdio>

int main() {

 int int_value = 5;

 float float_value = 4.2;

 // int converts to float

 auto result = int_value + float_value;

 printf("result = %f\n", result);

 return 0;

}

•	 In a switch statement to an integral type. For example:

char input = 'B';

// implicit conversion from char to int

switch (input) {

 case 65:

 printf("Input is 'A'\n");

Improving Type-Safety with Strong Types174

 break;

 case 66:

 printf("Input is 'B'\n");

 break;

 default:

 printf("Unknown input");

}

•	 In an if statement, types can be converted to a bool type. For example:

#include <cstdio>

int main() {

 int int_value = 10;

 // int implicitly converts to bool

 if (int_value) {

 printf("true\n");

 }

 return 0;

}

There are different types of implicit conversion that are handled by a compiler, and some of the

most important are:

•	 Numeric promotions and conversions

•	 Array to pointer conversion

•	 Function to pointer conversion

Next, we will discuss the above implicit conversions with examples.

Numeric promotions and conversions
Arithmetic types can be promoted or converted to other arithmetic types. Type promotion will

not change the value or lose precision. std::uint8_t can be promoted to int, or float can be

promoted to double. If a type that is being converted can fit entirely to the destination type,

without loss of precision, it is being promoted.

Chapter 9 175

Arithmetic operators do not accept types smaller than int. Arithmetic types can be promoted

when passed as operands to arithmetic operators. There are specific rules for promotions of

integral and floating-point types based on their type:

•	 Boolean promotion: bool is promoted to int with value 0 if set to false, and 1 if true

•	 Other integral types, including bitfields, are converted to the smallest type from the

following list that can represent all the values of the converted type:

•	 int

•	 unsigned int

•	 long

•	 unsigned long

•	 long long

•	 unsigned long long

•	 A float can be promoted to double.

To better understand integer promotion rules, we will go over the next example:

#include <cstdint>

#include <type_traits>

int main() {

 std::uint8_t a = 1;

 std::uint16_t b = 42;

 auto res1 = a + b;

 static_assert(std::is_same_v<int, decltype(res1)>);

 return 0;

}

In the above example, we added uint8_t and uint16_t. According to the promotion rules, both

types will be promoted to int, as they can be fully represented by int. The result of the adding

is stored in the variable res1, which is declared as auto, meaning that the compiler will deduce

its type. We expect it to be an int and we verify that using static_assert and std::is_same_v.

In this example, both types were promoted to the same type. If we had different types after

promotion, then they would be converted to a common type under the rules of usual arithmetic

conversion.

Improving Type-Safety with Strong Types176

The goal of the usual arithmetic conversion is to yield types to a common type, which is also the

type of the result. There are a couple of rules to usual arithmetic conversion:

•	 If both types are signed or unsigned integers, then the common type is the type of greater

integer conversion rank. The ranks are listed below in decreasing order (the ranks of

unsigned integers correspond to those of matching signed):

•	 long long

•	 long

•	 int

•	 short

•	 signed char

•	 If one of the types is a signed integer and the other one is unsigned then the following

rules apply:

•	 If the integer conversion rank of the unsigned type is greater than or equal to the

signed type, then the common type is that of the unsigned type.

•	 Otherwise, if the signed type can represent all the values of the unsigned type, the

common type is that of the signed type.

•	 Otherwise, the common type is an unsigned integer of the type of the signed

integer.

•	 If one of the types is a floating type and the other is an integer, the integer is converted

to that floating type.

•	 If both types are the floating type but of different floating-point conversion ranks, the

type with the lower conversion rank is converted to the other one. The floating-point

conversion rank is listed below in decreasing order:

•	 long double

•	 double

•	 float

Chapter 9 177

Let’s go through the following example to better understand the rules of usual arithmetic

conversion:

#include <type_traits>

int main() {

 struct bitfield{

 long long a:31;

 };

 bitfield b {4};

 int c = 1;

 auto res1 = b.a + c;

 static_assert(sizeof(int) == 4);

 static_assert(sizeof(long long) == 8);

 static_assert(std::is_same_v<int, decltype(res1)>);

 long e = 5;

 auto res2 = e - b.a;

 static_assert(std::is_same_v<long, decltype(res2)>);

 return 0;

}

In the above example, we have a bitfield of 31 bits with an underlying type of long long. We

first add b.a and variable c of type int. If we are on a platform where the size of the int is 4 bytes,

the bitfield will be promoted to the int, even though the underlying type long long has a size

of 8 bytes. The promoted bitfield will be added to int c, so the result of this operation will also be

int, which we verify by checking the type of res1 using std::is_same_v.

In the second part of the example, we subtract the bitfield from long e. In this case, the bitfield is

first promoted to int; then, according to the rules of usual arithmetic conversion, it is converted

to long, meaning that the resulting type will also be long.

Improving Type-Safety with Strong Types178

You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_usual_arithmetic_conversion.
cpp"

$ cmake --build build --target run_in_renode

The fact that the program builds successfully is enough to confirm the usual arithmetic conversion

results, as we used static_assert to verify it.

Now, let us take a look at an example whose result may be surprising:

#include <cstdio>

int main() {

 int a = -4;

 unsigned int b = 3;

 if(a + b > 0) {

 printf("%d + % u is greater than 0\r\n", a, b);

 }

 return 0;

}

If you run this example, the expression within the if clause will evaluate to true. As per the

rules of usual arithmetic conversion, the signed int a will be converted to the unsigned int,

meaning that the expression a + b will indeed be greater than 0. Mixing unsigned and signed

types in arithmetic expressions can lead to undesired behavior and potential bugs due to implicit

conversions.

We can use –Wconversion and -Wsign-conversion compiler flags with GCC to make it raise a

warning when implicit conversion may change a value and sign. Still, mixing signed and unsigned

types in arithmetic expressions should be avoided as it can result in wrong results.

Next, we will discuss array-to-pointer conversion and its implications.

Array-to-pointer conversion
An array can be implicitly converted to a pointer. The resulting pointer points to the first element

of the array. Many C and C++ functions that work on arrays of data are designed with pointer

and size parameters. These interfaces are based on contract design. The contract is the following:

•	 A caller will pass a pointer that points to the first element of the array

•	 A caller will pass the size of the array

Chapter 9 179

This is a simple contract, but there is no way to enforce it. Let’s take a look at the following simple

example:

#include <cstdio>

void print_ints(int * arr, std::size_t len) {

 for(std::size_t i = 0; i < len; i++) {

 printf("%d\r\n", arr[i]);

 }

}

 int main() {

 int array_ints[3] = {1, 2, 3};

 print_ints(array_ints, 3);

 return 0;

}

In the above example, we have the print_ints function with arr, a pointer to an int, and len,

a std::size_t parameter. In the main function, we call the print_ints function by passing

array_ints, an array of 3 integers, and 3 as arguments. The array array_ints will be implicitly

converted to a pointer that points to its first element. There are a couple of potential issues with

the print_ints function:

•	 It expects that the pointer we pass to it is valid. It doesn’t verify that.

•	 It expects that the argument it receives for the len parameter is the actual size of the array

it operates on. A caller could pass a size that may cause out-of-bounds access.

•	 As it operates directly on a pointer, there is always a chance of out-of-bound access if

pointer arithmetic is used in the function.

To eliminate these potential issues, in C++, instead of using a pointer to work on an array of data,

we can use the class template std::span. It is a wrapper for a contiguous sequence of objects,

with the first element of the sequence at position zero. It can be constructed from a C-style array,

it has the size method, and we can use range-based for loops on it. Let’s write the previous

example using the std::span instead of the pointer:

#include <cstdio>

#include

void print_ints(const std::span<int> arr) {

 for(int elem: arr) {

 printf("%d\r\n", elem);

Improving Type-Safety with Strong Types180

 }

}

int main() {

 int arr[3] = {1, 2, 3};

 print_ints(arr);

 return 0;

}

In the above example, we can see that the function print_ints looks much simpler now. It accepts

std::span of integers and it uses a range-based for loop to iterate over the elements. On the call

site, we now just pass arr, an array of 3 integers. It is implicitly converted to std::span.

The class template std::span also has the size method, operator [], and begin and end iterators,

meaning we can use it in standard library algorithms. We can also construct a subspan from

span. It can be constructed from C-style arrays, but also from containers such as std::array and

std::vector. It is a great solution to potential issues of interfaces that usually rely on pointer

and size parameters.

Function-to-pointer conversion
A function can be implicitly converted to a pointer to that function. The following example

demonstrates this:

#include <cstdio>

#include <type_traits>

void print_hello() {

 printf("Hello!\r\n");

}

int main() {

 void(*fptr)() = print_hello;

 fptr();

 fptr = &print_hello;

 (*fptr)();

 static_assert(std::is_same_v<decltype(fptr), void(*)()>);

Chapter 9 181

 static_assert(std::is_same_v<decltype(print_hello), void()>);

 return 0;

}

In the example above, we assign the function print_hello to a function pointer fptr. In C++, we

don’t need to use the address-off operator with a function name to assign it to a function pointer.

Also, we don’t need to dereference a function pointer when making a call to a function through it.

Still, print_hello and fptr are two different types and we confirm this using the static_assert

and is_same type traits.

Implicit conversions in C++ make writing the code easier. They can sometimes lead to undesired

behavior and potential issues with our program. To mitigate these concerns, we can explicitly

convert types when needed.

Next, we will cover explicit conversion.

Explicit conversion
C++ supports C-style cast explicit conversion, but also functional-style cast and the following

casting operators:

•	 const_cast

•	 static_cast

•	 dynamic_cast

•	 reinterpret_cast

We will go through casting operators, starting with const_cast.

const_cast
const_cast is used to cast away constness to work with non-const-correct functions. We will go

through the following example to better understand it:

#include <cstdio>

void print_num(int & num) {

 printf("num is %d\r\n", num);

}

int main() {

 const int num = 42;

Improving Type-Safety with Strong Types182

 print_num(const_cast<int&>(num));

 int & num_ref = const_cast<int&>(num);

 num_ref = 16;

 return num;

}

In the above example, we used const_cast in two different scenarios. We first used it to cast away

constness from const int num to be able to pass it to the print_num function. The print_num

function has a single parameter – a non-const reference to an int. As we know that this function

is not trying to modify the object that the reference is bound to, we decided to cast away constness

so we can pass a reference to a const int to it without the compiler generating an error.

Then, we used const_cast to cast away constness from the num to be able to assign it to non-const

reference num_ref. If you run this example in Compiler Explorer, you will see the following output:

Program returned: 42

num is 42

The program returned 42, that is, the value of num is 42 even though we tried to set it to 16 through

num_ref. This is due to the fact that modifying the const variable through a non-const reference

or a pointer is undefined behavior.

const_cast is used mostly to interface with non-const correct functions. Still, this is dangerous

and should be avoided as we can’t guarantee that the function we are passing a const-cast-away

pointer or a reference will not try to modify the object that the pointer is pointing to or the reference

it is bound to. Next, we will cover static_cast.

static_cast
The most used cast operator in C++ is static_cast, and it is used in the following scenarios:

•	 To upcast and downcast a pointer of base class to derived class and vice versa

•	 To discard a value expression

•	 To convert between types with well-known conversion paths such as int to float, enum to

an int, int to an enum, and similar

Chapter 9 183

We will go through several usages of static_cast using the following example:

#include <cstdio>

struct Base {

 void hi() {

 printf("Hi from Base\r\n");

 }

};

struct Derived : public Base {

 void hi() {

 printf("Hi from Derived\r\n");

 }

};

int main() {

 // unsigned to signed int

 int a = -4;

 unsigned int b = 3;

 if(a + static_cast<int>(b) > 0) {

 printf("%d + %d is greater than 0\r\n", a, b);

 }

 else {

 printf("%d + %d is not greater than 0\r\n", a,b);

 }

 // discard an expression

 int c;

 static_cast<void>(c);

 Derived derived;

 // implicit upcast

 Base * base_ptr = &derived;

 base_ptr->hi();

Improving Type-Safety with Strong Types184

 // downcast

 Derived *derived_p = static_cast<Derived*>(base_ptr);

 derived_p->hi();

 return 0;

}

If we run the above example, we will get the following output:

-4 + 3 is not greater than 0

Hi from Base

Hi from Derived

In the above example, we used static_cast to convert an unsigned int to a signed int, which

helps mitigate the issue of comparing integers with mixed signs introduced by implicit conversion.

Still, we would need to make sure that the conversion is safe as static_cast doesn’t do any

runtime checks.

Using static_cast to cast the variable c to void is a technique used to suppress compiler warnings

about unused variables. It indicates that we are aware of the variable, but we intentionally do

not use it.

In the other part of the above example, we can see that an address to an object of the Derived class

can be implicitly converted to a pointer of the Base class. If we call a function hi on the pointer

of the Base class which is pointing to an object of the Derived class, we will actually make a call

to a hi function defined in the Base class. Then we used static_cast to downcast Base pointer

to a Derived pointer.

Down-casting using static_cast can be dangerous as static_cast doesn’t do any runtime

checks to make sure that the pointer is actually pointing to the converting type. An object of the

Derived class is also an object of the Base class, but the reverse is not true – Base is not Derived.

The following example demonstrates why this is dangerous:

#include <cstdio>

struct Base {

 void hi() {

 printf("Hi from Base\r\n");

 }

};

Chapter 9 185

struct Derived : public Base {

 void hi() {

 printf("Hi from Derived, x = %d\r\n", x);

 }

 int x = 42;

};

int main() {

 Base base;

 Derived *derived_ptr = static_cast<Derived*>(&base);

 derived_ptr->hi();

 return 0;

}

In this code, we are trying to access member x of the Derived class on an object of the base class.

As we used static_cast, the compiler will not complain and this will result in undefined behavior,

as the base class doesn’t have member x. One of the possible outputs of this program is shown here:

Hi from Derived, x = 1574921984

To avoid this problem, we can use dynamic_cast, which we will cover next.

dynamic_cast
dynamic_cast performs runtime checks of types and sets the result to nullptr in case the Base

pointer doesn’t actually point to an object of the Derived class. We will go through an example

to better understand it:

#include <cstdio>

struct Base {

 virtual void hi() {

 printf("Hi from Base\r\n");

 }

};

struct Derived : public Base {

 void hi() override {

 printf("Hi from Derived\r\n");

Improving Type-Safety with Strong Types186

 }

 void derived_only() {

 printf("Derived only method\r\n");

 }

};

void process(Base *base) {

 base->hi();

 if(auto ptr = dynamic_cast<Derived*>(base); ptr ! = nullptr)

 {

 ptr->derived_only();

 }

}

int main() {

 Base base;

 Derived derived;

 Base * base_ptr = &derived;

 process(&base);

 process(base_ptr);

 return 0;

}

In the above example, we have a function process with a pointer to Base as a parameter. The

function uses dynamic_cast to downcast the Base pointer to a Derived pointer. In the if statement

with initializer, we initialize ptr with the result of dynamic_cast<Derived*> on a Base pointer.

In the condition of the if statement, we check if ptr is different from nullptr, and if it is we can

safely use it as a pointer to an object of the Derived class. Next, we will cover reinterpret_cast.

Chapter 9 187

reinterpret_cast
reinterpret_cast is used to convert between types by reinterpreting the underlying bits. It can

be used in the following situations:

•	 To convert a pointer to an integer large enough to hold all of its values.

•	 To convert a value of an integer to a pointer. A pointer converted to an integer and back

to its original type is guaranteed to have the original value and can be dereferenced safely.

•	 To convert pointers between different types, such as between T1 and T2. The resulting

pointer to T2 can be dereferenced safely only if the resulting pointer is char, unsigned

char, std::byte, or T1.

•	 To convert a function pointer F1 to a pointer to a different function F2. Converting F2 back

to F1 will result in the pointer to F1.

To better understand reinterpret_cast, we will go through the following example:

#include <cstdio>

#include <cstdint>

int fun() {

 printf("fun\r\n");

 return 42;

}

int main() {

 float f = 3.14f;

 // initialize pointer to an int with float address

 auto a = reinterpret_cast<int*>(&f);

 printf("a = %d\r\n", *a);

 // the above is same as:

 a = static_cast<int*>(static_cast<void*>(&f));

 printf("a = %d\r\n", *a);

 // casting back to float pointer

 auto fptr = reinterpret_cast<float*>(a);

 printf("f = %.2f\r\n", *fptr);

Improving Type-Safety with Strong Types188

 // converting a pointer to integer

 auto int_val = reinterpret_cast<std::uintptr_t>(fptr);

 printf("Address of float f is 0x%8X\r\n", int_val);

 auto fun_void_ptr = reinterpret_cast<void(*)()>(fun);

 // undefined behavior

 fun_void_ptr();

 auto fun_int_ptr = reinterpret_cast<int(*)()>(fun);

 // safe call

 printf("fun_int_ptr returns %d\r\n", fun_int_ptr());

 return 0;

}

You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_reinterpret_cast.cpp"

$ cmake --build build --target run_in_renode

Running the example in Renode will provide the following output:

a = 1078523331

a = 1078523331

f = 3.14

Address of float f is 0x20003F18

fun

fun

fun_int_ptr returns 42

The above example demonstrates the usage of reinterpret_cast. We first initialized a pointer

to an int using the address of a float using reinterpret_cast<int*>(&f). This is equivalent to

using static_cast as static_cast<int*>(static_cast<void*>(&f)). We print the value of

the dereference integer pointer, and it is 1078523331. This is an actual bit pattern contained in

the float variable f. It is an IEEE-754 floating point representation of 3.14.

Chapter 9 189

However, dereferencing the integer pointer initialized by an address of a float is not a defined

behavior according to the C++ standard. This is called type punning – treating an object of one

type as if it were another type. Using reinterpet_cast for type punning is common, as it proved

to yield expected results on most platforms despite the undefined behavior. There are alternatives

that we will discuss after going through this example.

If we cast the pointer to the integer back to a pointer to a float, it is safe to dereference the resulting

pointer.

Next, we converted the pointer to float to an integer to print the address it contains. We used

std::uintptr_t, an integer type that is capable of holding a pointer to void. Following this, we

initialized fun_void_ptr – a pointer to a function that returns void with function fun, which

returns int. We made a call on the fun_void_ptr pointer, which printed the expected output, but

it is still undefined. Converting fun_void_ptr to a pointer that matches the signature of function

fun – fun_int_ptr – will make calling fun through the resulting pointer safe.

Next, we will go through type punning in C++ and the alternatives to using reinterpret_cast

for this task.

Type punning
Using reinterpret_cast for type punning is a common practice even though it introduces

undefined behavior. Aliasing rules determine how we can access an object in C++, and to put

it simply, we can access an object through a pointer and const qualified version of that pointer,

a struct or union that contains the object, and through a char, unsigned char, and std::byte.

We will go through the following example to better understand type punning in C++:

#include <cstdio>

#include <cstdint>

#include <cstring>

namespace {

struct my_struct {

 int a;

 char c;

};

void print_my_struct (const my_struct & str) {

 printf("a = %d, c = %c\r\n", str.a, str.c);

}

Improving Type-Safety with Strong Types190

void process_data(const char * data) {

 const auto *pstr = reinterpret_cast<const my_struct *>(data);

 printf("%s\r\n", __func__);

 print_my_struct(pstr[0]);

 print_my_struct(pstr[1]);

}

void process_data_memcpy(const char * data) {

 my_struct my_structs[2];

 std::memcpy(my_structs, data, sizeof(my_structs));

 printf("%s\r\n", __func__);

 print_my_struct(my_structs[0]);

 print_my_struct(my_structs[1]);

}

};

int main() {

 int i = 42;

 auto * i_ptr = reinterpret_cast<char*>(&i);

 if(i_ptr[0]==42) {

 printf("Little endian!\r\n");

 }

 else {

 printf("Big endian!\r\n");

 }

 my_struct my_structs_arr[] = {{4, 'a'}, {5, 'b'}};

 char arr[128];

 std::memcpy(&arr, my_structs_arr, sizeof(my_structs_arr));

 process_data(arr);

 process_data_memcpy(arr);

 return 0;

}

Chapter 9 191

You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_type_punning.cpp"

$ cmake --build build --target run_in_renode

Running the example in Renode will provide the following output:

Little endian!

process_data

a = 4, c = a

a = 5, c = b

process_data_memcpy

a = 4, c = a

a = 5, c = b

In the example above, we used reinterpret_cast to treat an integer i as an array of chars. By

checking the value pointed by the first element of the mentioned array, we can determine if we

are on a big or little-endian system. As per the aliasing rules, this is a valid approach, but treating

an array of chars as some other type would be undefined behavior. We did that in the function

void process_data where we reinterpreted an array of chars as an array of my_struct objects. The

output of the program is as we would expect it, even though we introduced undefined behavior.

To mitigate this issue, we can use std::memcpy.

Type punning – the correct way
Using std::memcpy is the only (as of C++23) available option for type punning in C++. In the

above example, we demonstrate this in the process_data_memcpy function. There is usually a

concern of bytes being copied, using additional memory and runtime overhead, but the fact is

that the call to memcpy is usually optimized away by a compiler. You can verify this by running

the above example in Compiler Explorer and by experimenting with different optimization levels.

C++20 introduces std::bit_cast, which can also be used for type punning, as in the following

example:

#include <cstdio>

#include <bit>

int main() {

Improving Type-Safety with Strong Types192

 float f = 3.14f;

 auto a = std::bit_cast<int>(f);

 printf("a = %d\r\n", a);

 return 0;

}

The output of the above program is:

a = 1078523331

The above example and the program output demonstrate the usage of std::bit_cast for type

punning. The std::bit_cast will return an object. We specify the type that we are converting to

as the template argument. This will also be the return type of the std::bit_cast. The size of the

converting type and the type we are converting to must be the same. This means std::bit_cast

is not an option for interpreting arrays of one type as arrays of another type, and for that we still

need to use std::memcpy.

Next, we will see how we can use strong types in C++ to increase type safety.

Strong types
When we talk about type-safety, we should also discuss the safety of interfaces that use commonly

available types such as integers and floats to represent physical units such as time, length, and

volume. Let us take a look at the following function from a vendor’s SDK:

/**

 * @brief Start the direct connection establishment procedure.

A LE_Create_Connection call will be made to the controller by GAP with the
initiator filter policy set to "ignore whitelist and

process connectable advertising packets only for the specified

device".

 * @param LE_Scan_Interval This is defined as the time interval from when
the Controller started its last LE scan until it begins the subsequent LE
scan.

Time = N * 0.625 msec.

 * Values:

 - 0x0004 (2.500 ms) ... 0x4000 (10240.000 ms)

Chapter 9 193

 * @param LE_Scan_Window Amount of time for the duration of the LE scan.
LE_Scan_Window

shall be less than or equal to LE_Scan_Interval.

Time = N * 0.625 msec.

 * Values:

 - 0x0004 (2.500 ms) ... 0x4000 (10240.000 ms)

 * @param Peer_Address_Type The address type of the peer device.

 * Values:

 - 0x00: Public Device Address

 - 0x01: Random Device Address

 * @param Peer_Address Public Device Address or Random Device Address of
the device

to be connected.

 * @param Conn_Interval_Min Minimum value for the connection event
interval. This shall be less than or equal to Conn_Interval_Max.

Time = N * 1.25 msec.

 * Values:

 - 0x0006 (7.50 ms) ... 0x0C80 (4000.00 ms)

 * @param Conn_Interval_Max Maximum value for the connection event
interval. This shall be

greater than or equal to Conn_Interval_Min.

Time = N * 1.25 msec.

 * Values:

 - 0x0006 (7.50 ms) ... 0x0C80 (4000.00 ms)

 * @param Conn_Latency Slave latency for the connection in number of
connection events.

 * Values:

 - 0x0000 ... 0x01F3

 * @param Supervision_Timeout Supervision timeout for the LE Link.

It shall be a multiple of 10 ms and larger than (1 + connSlaveLatency) *
connInterval * 2.

Time = N * 10 msec.

 * Values:

 - 0x000A (100 ms) ... 0x0C80 (32000 ms)

 * @param Minimum_CE_Length Information parameter about the minimum
length of connection needed for this LE connection.

Time = N * 0.625 msec.

 * Values:

Improving Type-Safety with Strong Types194

 - 0x0000 (0.000 ms) ... 0xFFFF (40959.375 ms)

 * @param Maximum_CE_Length Information parameter about the maximum
length of connection needed

for this LE connection.

Time = N * 0.625 msec.

 * Values:

 - 0x0000 (0.000 ms) ... 0xFFFF (40959.375 ms)

 * @retval Value indicating success or error code.

*/

tBleStatus aci_gap_create_connection(

 uint16_t LE_Scan_Interval,

 uint16_t LE_Scan_Window,

 uint8_t Peer_Address_Type,

 uint8_t Peer_Address[6],

 uint16_t Conn_Interval_Min,

 uint16_t Conn_Interval_Max,

 uint16_t Conn_Latency,

 uint16_t Supervision_Timeout,

 uint16_t Minimum_CE_Length,

 uint16_t Maximum_CE_Length);

This is a well-documented function. Still, it takes a lot of effort to understand all the parameters

that it accepts and the exact units of each. Most of the parameters represent time but in a different

way.

LE_Scan_Interval, LE_Scan_Window, Conn_Interval_Min, Conn_Interval_Max, Supervision_

Timeout, Minimum_CE_Length, and Maximum_CE_Length are all time-related parameters, but they

represent different units. They are either multiples of 0.625, 1.25, or 10 ms. The vendor of the above

function also provided the following macros:

#define CONN_L(x) ((int)((x) / 0.625f))

#define CONN_P(x) ((int)((x) / 1.25f))

Here is an example of a call to the above function using the provided macros:

tBleStatus status = aci_gap_create_connection(CONN_L(80), CONN_L(120),
PUBLIC_ADDR, mac_addr, CONN_P(50), CONN_P(60), 0, SUPERV_TIMEOUT,
CONN_L(10), CONN_L(15));

Chapter 9 195

The macros help a bit with readability, but the problem of passing bad values to this function still

remains. It is fairly easy to make a mistake, swap the CONN_L and CONN_P macros, and introduce

a hard-to-find bug to the program. Instead of uint16_t, we could define and use types conn_l

and conn_p. If we wrap the function with these amendments, we will have the following wrapper

function:

tBleStatus aci_gap_create_connection_wrapper(

 conn_l LE_Scan_Interval,

 conn_l LE_Scan_Window,

 uint8_t Peer_Address_Type,

 uint8_t Peer_Address[6],

 conn_p Conn_Interval_Min,

 conn_p Conn_Interval_Max,

 uint16_t Conn_Latency,

 uint16_t Supervision_Timeout,

 conn_l Minimum_CE_Length,

 conn_l Maximum_CE_Length);

In the above example, we are using conn_l and conn_p types instead of uint16_t, and we will

define these types as follows:

class conn_l {

private:

 uint16_t time_;

public:

 explicit conn_l(float time_ms) : time_(time_ms/0.625f){}

 uint16_t & get() {return time_;}

};

class conn_p {

private:

 uint16_t time_;

public:

 explicit conn_p(float time_ms) : time_(time_ms/1.25f){}

 uint16_t & get() {return time_;}

};

Improving Type-Safety with Strong Types196

Using the above strong types conn_l and conn_p, we can call the wrapper function as shown below:

 tBleStatus stat = aci_gap_create_connection_wrapper(

 conn_l(80),

 conn_l(120),

 PUBLIC_ADDR,

 nullptr,

 conn_p(50),

 conn_p(60),

 0,

 SUPERV_TIMEOUT,

 conn_l(10),

 conn_l(15)

);

By using the keyword explicit in front of constructors of types conn_l and conn_p, we make

sure that the compiler doesn’t perform implicit conversion from integer types. This makes it

impossible to pass an integer or a float that can be used to construct conn_l and conn_p to the

aci_gap_create_connection_wrapper.

You can run the entire example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_strong_types.cpp"

$ cmake --build build --target run_in_renode

Compiling the example successfully means that we passed all the correct arguments to aci_gap_

create_connection_wrapper. As an exercise, try passing integer values instead of conn_l and

conn_p arguments to see how they prevent the compiler from doing implicit conversions. After

that, try removing the explicit keyword from the conn_l and conn_p constructors to see what

will happen.

We can further improve the example by introducing a strong-type time that will represent the

time duration, and make it a private member of types conn_l and conn_p. The code would look

as follows:

class time {

private:

 uint16_t time_in_ms_;

public:

 explicit time(uint16_t time_in_ms) : time_in_ms_(time_in_ms){}

Chapter 9 197

 uint16_t & get_ms() {return time_in_ms_;}

};

time operator""_ms(unsigned long long t) {

 return time(t);

}

class conn_l {

private:

 uint16_t val_;

public:

 explicit conn_l(time t) : val_(t.get_ms()/0.625f){}

 uint16_t & get() {return val_;}

};

class conn_p {

private:

 uint16_t val_;

public:

 explicit conn_p(time t) : val_(t.get_ms()/1.25f){}

 uint16_t & get() {return val_;}

};

In the above example, we created a strong-type time and used it as a private member in types

conn_l and conn_p. We also created a user-defined literal with operator""_ms to make the

following function call possible:

 tBleStatus stat = aci_gap_create_connection_wrapper(

 conn_l(80_ms),

 conn_l(120_ms),

 PUBLIC_ADDR,

 nullptr,

 conn_p(50_ms),

 conn_p(60_ms),

 0_ms,

 4000_ms,

 conn_l(10_ms),

 conn_l(15_ms)

);

Improving Type-Safety with Strong Types198

In the above example, we are using the user-defined literal operator""_ms to create objects of

strong-type time that are used to instantiate conn_l and conn_p objects.

The above changes to the original interface improve code readability and compile-time error

detection. Using strong types, we make it a lot harder to pass wrong values to the function,

increasing the type-safety of our codebase.

Summary
Type safety is an important aspect of any programming language used in critical applications.

Understanding potential issues of implicit conversion is important to mitigate type-safety

concerns. Type punning is another area that deserves special attention in C++, and we learned

how to address it properly. We also learned how to use strong types to mitigate issues of passing

wrong values to parameters with the same types.

Next, we will cover lambdas in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

10
Writing Expressive Code with
Lambdas

Lambda expressions in C++ allow us to write short blocks of code that encapsulate functionality

and capture the surrounding state into a callable object. We can use operator() on a callable

object to execute the functionality implemented in it.

Common uses of lambdas include passing a function object (also called a functor – an object of a

class that overrides operator()) to standard library algorithms, or any code expecting a function

object, encapsulating small blocks of code that are often used only in a single function, and variable

initialization. Their ability to localize functionality without separate functions or class methods

modernized C++, making it possible to write cleaner, more expressive code.

In embedded development, lambdas are especially useful for defining actions in response to timer

or external interrupts, scheduling tasks, and similar event-driven mechanisms. The goal of this

chapter is to learn how to use lambda expressions to write expressive C++ code. In this chapter,

we’re going to cover the following main topics:

•	 Lambda expression basics

•	 Store lambdas using std::function

•	 std::function and dynamic memory allocation

Writing Expressive Code with Lambdas200

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using a lot of modern C++ features, make sure to select the C++23

standard by adding -std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects the

output and generated assembly. Most of the examples can also be run in the Renode simulator on

the ARM Cortex-M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter10).

Lambda expression basics
Lambda expressions, or lambdas, were introduced in C++11. They are used to create an instance

of an unnamed closure type in C++. A closure stores an unnamed function and can capture

variables from its scope by value or reference. We can call operator () on a lambda instance,

with arguments specified in the lambda definition, effectively calling the underlying unnamed

function. To draw a parallel with C, lambdas are callable in the same way as function pointers.

We will now dive into an example to demonstrate how we can use lambdas in C++ and explain

details regarding lambda capturing. Let us process the example below:

#include <cstdio>

#include <array>

#include <algorithm>

int main() {

 std::array<int, 4> arr{5, 3, 4, 1};

 const auto print_arr = [&arr](const char* message) {

 printf("%s\r\n", message);

 for(auto elem : arr) {

 printf("%d, ", elem);

 }

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter10
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter10

Chapter 10 201

 printf("\r\n");

 };

 print_arr("Unsorted array:");

 std::sort(arr.begin(), arr.end(), [](int a, int b) {

 return a < b;});

 print_arr("Sorted in ascending order:");

 std::sort(arr.begin(), arr.end(), [](int a, int b) {

 return a > b;});

 print_arr("Sorted in descending order:");

 return 0;

}

Running the above example, we will get the following output:

Unsorted array:

5, 3, 4, 1,

Sorted in ascending order:

1, 3, 4, 5,

Sorted in descending order:

5, 4, 3, 1,

What we see are outputs of the lambda print_arr used to print an array arr defined in the main

function. Let’s go through the print_arr lambda in detail:

•	 The [&arr] syntax captures the variable arr by reference from the surrounding scope. This

means the lambda can access and use arr directly within its body.

•	 We can capture variables by value, or by reference if we prefix the name of a variable with

& as we did for the print_arr lambda.

•	 Capturing by reference [&arr] allows the lambda to see any changes made to arr outside

the lambda after its definition. If we captured by value, the lambda would have its own

copy of arr.

•	 By defining print_arr as a lambda within main, we encapsulate the functionality of

printing the array without needing to create a separate function. This keeps related code

together and enhances readability.

Writing Expressive Code with Lambdas202

In the same example, we used lambdas as predicate functions to the std::sort algorithm, to

sort array arr first in ascending, then in descending order. We will go through this use case of

lambdas in more detail:

•	 The std::sort algorithm rearranges the elements of arr based on the comparator provided.

•	 The lambda [](int a, int b) { return a < b; } acts as a comparator function for

std::sort. It takes two integers and returns true if the first is less than the second, which

results in an ascending sort.

•	 The lambda [](int a, int b) { return a > b; } returns true if the first integer is

greater than the second, resulting in a descending sort.

Defining the comparator directly at the call site of std::sort makes the code more concise. It

becomes immediately clear how the array is being sorted without needing to look elsewhere in

the code.

In the cases of using lambdas with the std::sort algorithm, both lambdas are small and simple,

making it easy to deduce what they return. Keeping lambdas short and straightforward is

considered a good practice as it improves readability and makes the intent of the code immediately

clear to others. We can also specify the lambda return type explicitly as in the following example:

 auto greater_than = [](int a, int b) -> bool {

 return a > b;

 };

Here, we explicitly defined the return type. This is optional and can be used when we want to be

explicit about the type that a lambda returns. Also, note that the capture clause of this lambda

is empty square brackets []. This indicates that the lambda is not capturing any variables from

the surrounding scope.

When the lambda is capturing a variable by reference, it is important to note that this introduces

lifetime dependency – meaning that the object that reference is bound to must exist when we

call the lambda – else, we will use a so-called dangling reference, which is undefined behavior.

This is especially a concern with asynchronous operations – that is, when a lambda is passed to

a function and called later. Next, we will learn how to store lambdas using std::function to use

them asynchronously.

Chapter 10 203

Storing lambdas using std::function
std::function is a class template that allows us to store, copy, and invoke callable objects such

as function pointers and lambdas. We will go through a simple code example to demonstrate this:

#include <cstdio>

#include <cstdint>

#include <functional>

int main() {

 std::function<void()> fun;

 fun = []() {

 printf("This is a lambda!\r\n");

 };

 fun();

 std::uint32_t reg = 0x12345678;

 fun = [reg]() {

 printf("Reg content 0x%8X\r\n", reg);

 };

 reg = 0;

 fun();

 return 0;

}

Let us go through the example:

•	 In the main function, we first create an object fun of type std::function<void()>. This

specifies that fun can store any callable object that returns void and takes no arguments.

This includes function pointers, lambdas, or any object with an operator() that matches

the signature.

•	 We then assign a lambda to fun and invoke it, which prints the message “This is a lambda!”

to the console.

Writing Expressive Code with Lambdas204

•	 Next, we assigned another lambda to the fun object. This time the lambda captures the

uint32_t reg by value from the surrounding scope and prints it. Capturing by value

means the lambda makes its own copy of reg at the moment the lambda is defined.

•	 We change the value of reg to 0 before invoking the callable object stored in fun to show

it is being captured by value. Calling fun prints Reg content 0x12345678.

Let’s use std::function in a more interesting example, where we will use it to store a callback

to a GPIO interrupt. The code is below:

#include <cstdio>

#include <cstdint>

#include <functional>

namespace hal

{

class gpio

{

public:

 gpio(const std::function<void()> & on_press) {

 if(on_press) {

 on_press_ = on_press;

 }

 }

 void execute_interrupt_handler () const {

 if(on_press_) {

 on_press_();

 }

 }

private:

 std::function<void()> on_press_ = nullptr;

};

Chapter 10 205

}; // namespace hal

int main () {

 hal::gpio button1([]() {

 printf("Button1 pressed!\r\n");

 });

 // invoke stored lambda

 button1.execute_interrupt_handler();

 return 0;

}

In the code above, we created a hal::gpio class that represents a GPIO:

The class stores std::function<void()> on_press_, which can hold any callable object like a

lambda function. It is initialized to nullptr to indicate it holds no callable object.

•	 It provides the method execute_interrupt_handler, which checks if on_press_ evaluates

to true, that is, if it stores a callable object, and executes it if it does.

In the main function, we create button1, an object of class hal::button:

•	 We provide the constructor with a simple lambda that prints Button1 pressed!.

•	 Next, we call the method execute_interrupt_handler, which invokes the stored lambda

and the program prints Button1 pressed!.

In a real firmware, we would call the method execute_interrupt_handler from an interrupt

service.

The above code is an example of the application of the command pattern, which is implemented

in a simple and expressive way in C++ thanks to std::function and lambda expressions.

Writing Expressive Code with Lambdas206

The command pattern
The command pattern is a behavioral design pattern used to capture a function call together

with required arguments – allowing us to execute those functions with a delay.

We will go through a canonical definition of the command pattern. Let us start with a UML

diagram of the pattern and explain it afterward:

Figure 10.1 – Command pattern – UML diagram

Figure 10.1 depicts a UML diagram of the command pattern. We notice the following entities in

the above diagram.

Chapter 10 207

The command interface with a virtual execute method, and a concrete_command implementation

of the interface.

•	 receiver, stored by a reference in the concrete_command implementation. It performs

an action that takes params as arguments.

•	 invoker, which stores a reference to the command interface and executes a command.

•	 client, which creates a receiver and passes it to the constructor of concrete_command.

It passes a reference of a created concrete_command to an invoker.

By using the command interface, we are able to make different concrete commands and provide

them to invokers. Instead of the command interface and concrete commands, we can use class

template std::function and lambda expressions for the same purpose.

In our previous example, we created the hal::gpio class as an invoker from the command pattern.

It has a std::function<void()> as a member – an equivalent to a command interface. A concrete

command is a lambda expression that we stored in std::function<void()>.

receiver is the lambda body – the printf function in our example – and client is the main

function. The client creates a receiver (hal::gpio button1) and provides it with a concrete

command (lambda expression). We call execute_interrupt_handler on the invoker directly

from the main function.

Next, we will expand this example to call execute_interrupt_handler from the interrupt handler

on the STM32 platform. The design will support interrupts from multiple pins. We will introduce

the gpio_interrupt_manager entity, which will be responsible for registering invokers and calling

the execute_interrupt_handler method on them.

GPIO interrupt manager
We want to utilize the std::function class template and lambda expressions to enable an

expressive way of creating GPIO interrupt handlers in firmware as in the following code:

const hal::gpio_stm32<hal::port_a> button1(hal::pin::p4, [](){

 printf("Button1 pressed!\r\n");

});

Writing Expressive Code with Lambdas208

In the code above, we are creating an object button1 from the class template hal::gpio_stm32

parametrized with hal::port_a. We are providing a constructor with hal::pin::p4 and a lambda

expression that will be executed on interrupt. This is a goal, an expressive interface for writing

interrupt handlers that also allows us to capture surrounding variables if needed, thanks to

lambda expressions.

From the code above, we can see both the pin and the port we are configuring and the callback

that will be executed on the interrupt. The mechanism that we will create will handle interrupt

handler registration to a central entity we will name gpio_interrupt_manager. Before we proceed

with the design, please run the full example in Renode using the instructions below.

1.	 Start Visual Studio Code, attach it to the running container, open the Chapter10/lambdas

project as described in Chapter 4, and run the following commands in the Visual Studio

Code terminal, or run them directly in the container terminal:

$ cd Chapter10/lambdas

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
std_function_command_pattern.cpp

$ cmake --build build --target run_in_renode

2.	 In Renode, we can simulate button press and release using the following command for

button1 and button2:

gpioPortA.button1 PressAndRelease

gpioPortA.button2 PressAndRelease

3.	 Entering the above command should result in the following output in the Renode console:

Button1 pressed!

Button2 pressed!

Chapter 10 209

As you can see, actions provided in lambdas are invoked by interrupts generated by buttons. Let

us go through the UML diagram of this example to understand how it works:

Figure 10.2 – GPIO Interrupt manager UML diagram

In Figure 10.2, we see the UML diagram of the GPIO interrupt manager. It is based on the command

pattern. We are using std::function<void()> in place of the command interface and lambda

expression for concrete commands. The invoker is the hal::gpio abstract class, which stores

the lambda in the member on_press. It registers itself with gpio_interrupt_manager in the

constructor as we can see from the following code:

gpio::gpio(const std::function<void()> & on_press) {

 on_press_ = on_press;

 gpio_interrupt_manager::register_interrupt_handler(this)

}

Writing Expressive Code with Lambdas210

gpio_interrupt_manager is a simple struct. It serves as a central entity for the interrupt handling

mechanism with the following features:

•	 It contains an array of hal::gpio pointers – std::array<gpio*, c_gpio_handlers_num>

gpio_handlers.

•	 It provides a static method to register a hal::gpio pointer – void register_interrupt_

handler(gpio * pin).

•	 It provides a static method that executes interrupt handlers stored in the array – void

execute_interrupt_handlers().

The method execute_interrupt_handlers is called from the interrupt service routine as shown

below:

extern "C" void EXTI4_15_IRQHandler(void) {

 gpio_interrupt_manager::execute_interrupt_handlers();

}

EXTI4_15_IRQHandler is an interrupt service routine defined in the vector table (defined in

platform/startup_stm32f072xb.s). That’s why we used "C" language linkage and implemented

it as a global function. The execute_interrupt_handlers method loops through the array of

hal::gpio pointers and calls the execute_interrupt_handler method on them as shown below:

void gpio_interrupt_manager::execute_interrupt_handlers() {

 for(std::size_t i = 0; i < w_idx; i++) {

 gpio_handlers[i]->execute_interrupt_handler();

 }

}

hal::gpio is an abstract class with the following features:

•	 It implements the execute_interrupt_handler method used by gpio_interrupt_

manager as we saw earlier.

•	 It defines the pure virtual method [[nodiscard]] virtual bool is_interrupt_

generated() const = 0. This method needs to be overridden by the derived class that

implements platform-specific functionality.

•	 It defines the virtual method virtual void clear_interrupt_flag() const = 0. This

method needs to be overridden by the derived class that implements platform-specific

functionality.

Chapter 10 211

The code for execute_interrupt_handler is shown below:

void gpio::execute_interrupt_handler () const {

 if(is_interrupt_generated()){

 clear_interrupt_flag();

 if(on_press_) {

 on_press_();

 }

 }

}

The execute_interrupt_handler method implements the following functionality:

•	 It checks if the interrupt should be handled by the current object using the virtual method

is_interrupt_generated. This method must be overridden by a derived class. The derived

class has the data needed to determine if the generated interrupt needs to be addressed

by the current object.

•	 If the interrupt should be addressed by the current object, the interrupt flag is cleared

using the virtual method clear_interrupt_flag and on_press_ is called if it stores a

callable object.

hal::gpio_stm32 is a class template derived from hal::gpio. We instantiate it with port as a

parameter, and it implements platform-specific operations such as GPIO initialization using the

vendor-provided C HAL library.

In the example, we instantiated hal::gpio_stm32 with struct port_a, which contains the void

init_clock() static function. This allows us to call a static method on the template parameter,

instead of defining port as an enum, checking it in runtime, and calling a port-specific function

for clock initialization.

The hal::gpio_stm32 class template uses hal::gpio as a base class:

•	 The constructor takes an enum pin and const reference to a std::function<void()>

object that we use to initialize the base class in the initialization list.

•	 [[nodiscard]] bool is_interrupt_generated() const – the overridden method uses

vendor-provided C HAL to determine if the interrupt was generated by the pin provided

to the object through the constructor.

•	 void clear_interrupt_flag() const – the overridden method implements platform-

specific code used to clear the interrupt flag.

Writing Expressive Code with Lambdas212

This sums up the implementation of the GPIO interrupt manager and explains the design. You

can refer to other details of the implementation in the source code provided in the Chapter10/

lambdas folder of the book’s GitHub repo.

Next, we will discuss the implications of using std::function on dynamic memory allocation.

std::function and dynamic memory allocation
std::function needs to store all variables and references that a lambda captures. This behavior

is implementation-defined, and implementations usually use heap, which is dynamic memory

allocation to store large amounts of variables. If the captured data is small (on some platforms,

16 bytes), it will be stored on the stack. This is called small object optimization. To demonstrate

the behavior of the std::function class template when capturing data, we will go through the

following example:

#include <cstdio>

#include <cstdint>

#include <cstdlib>

#include <functional>

void *operator new(std::size_t count) {

 printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

 return std::malloc(count);

}

void operator delete(void *ptr) noexcept {

 printf("%s\r\n", __PRETTY_FUNCTION__);

 std::free(ptr);

}

int main () {

 std::function<void()> func;

 auto arr = []() {

 constexpr std::size_t c_array_size = 6;

 std::array<int, c_array_size> ar{};

 for(int i = 0; i < ar.size(); i++) {

 ar[i] = i;

 }

Chapter 10 213

 return ar;

 }();

 auto array_printer = [arr]() {

 for(int elem: arr) {

 printf("%d, ", elem);

 }

 printf("\r\n");

 };

 func = array_printer;

 // invoke stored lambda

 func();

 return 0;

}

In the above example, we have overridden the operators new and delete to show that storing a

lambda that captures an array of 6 integers will invoke dynamic memory allocation. If you run the

above example in Compiler Explorer using x86-64 GCC 14.2, you will see the following output:

void* operator new(std::size_t), size = 24

0, 1, 2, 3, 4,

void operator delete(void*)

This example also demonstrates the initialization of variable arr by using a lambda to generate

members of the array. If you change constexpr std::size_t c_array_size to 4, you will notice

that the operators new and delete are no longer invoked, meaning that, in this case, the captured

data is stored on the stack.

To get around this problem, we can assign std::reference_wrapper of a lambda object to

std::function<void()> fun instead of the object itself as in the following line of code:

 func = std::ref(array_printer);

This will make the std::function object use a reference wrapper to the lambda object, instead

of copying it and storing all the variables that lambda is capturing. Using this approach, we must

take care of the lambda object lifetime, meaning that if it goes out of scope and we try to invoke

it through the std::function object, we will end up with undefined behavior of the program.

Writing Expressive Code with Lambdas214

We can also use plain function pointers to store lambdas, but only if they don’t capture anything

from the surrounding scope, as in the following example:

#include <cstdio>

#include <functional>

int main () {

 void(*fun)(void);

 fun = []() {

 printf("Lambda!\r\n");

 };

 fun();

 return 0;

}

In the above example, we assign the lambda to a function pointer, making it a possible alternative

to storing lambdas to the std::function class template in certain applications. This also makes

it possible to pass non-capturing lambdas to C functions that expect function pointers.

Summary
Lambda expressions and std::function are powerful modern C++ tools that allow us to write

expressive code and implement design patterns such as command patterns in an elegant way.

We learned about different ways to capture data from the surrounding scope – by value or a

reference. We also went through the command pattern design pattern and learned how to apply

it to a GPIO interrupt manager.

In the next chapter, we will go through compile-time computation in C++.

11
Compile-Time Computation

Compile-time computation refers to the ability of a compiler to execute functions at compile time,

instead of converting them to machine code. This means that the results of complex operations

can be calculated by the compiler and stored in variables that are used at runtime. A compiler can

execute a function at compile time only if all arguments of the function are known at compile time.

We can use compile-time computation in C++ firmware to calculate complex math operations,

generate lookup tables and arrays in general, and use the generated values at runtime. Perform-

ing these operations at compile time will save valuable memory and processor (space and time)

resources and make them available for other, more important operations.

The goal of this chapter is to learn how to use compile-time computation in C++ to shift complex

operations at compile time and save valuable resources. In this chapter, we’re going to cover the

following main topics:

•	 Templates

•	 The constexpr specifier

•	 The consteval specifier

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architecture.

This will allow you to see standard output (stdio) results and better observe the code’s behavior.

As we are using a lot of modern C++ features, make sure to select the C++23 standard by adding

-std=c++23 to the compiler options box.

https://godbolt.org/
https://godbolt.org/

Compile-Time Computation216

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects

the output and generated assembly code. Most of the examples can also be run in the Renode

simulator on an ARM Cortex-M0 target and are available on GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11).

Templates
The first available mechanism for compile-time computation in C++ was Template Meta-Pro-

gramming (TMP). Using TMP, we can store the results of operations in types, as shown in the

following example of computing the factorial:

template <unsigned int N>

struct factorial {

 static const unsigned int value = N * factorial<N-1>::value;

};

template <>

struct factorial<0> {

 static const unsigned int value = 1;

};

int main () {

 const int fact = factorial<5>::value;

 return fact;

}

If you run this example in Compiler Explorer (even without optimizations), you will see that it

returns 120. The generated assembly code is short and does not contain any function calls. It simply

places the value 120 in the return register in the main function, meaning the factorial computation

was done at compile time. You can see the generated assembly code here:

main:

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-4], 120

 mov eax, 120

 pop rbp

 ret

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11

Chapter 11 217

We performed the following steps in the preceding example:

•	 We defined a class template factorial. It has an unsigned int, N, as the parameter and

only one member: static const unsigned int value = N * factorial<N-1>::value.

•	 In the assignment expression of the member value, we use recursion at the template level

as we calculate it by multiplying N by the value from the factorial instantiated with N – 1.

•	 We define factorial template specialization for 0, making it a base type that will stop

recursion, meaning that factorial<0>::value will contain 1.

To better understand the recursion at the template level, we will write down the entire recursion

chain for the preceding example:

•	 factorial<5>::value = 5 * factorial<4>::value;

•	 factorial<4>::value = 4 * factorial<3>::value;

•	 factorial<3>::value = 3 * factorial<2>::value;

•	 factorial<2>::value = 2 * factorial<1>::value;

•	 factorial<1>::value = 1 * factorial<0>::value;

•	 factorial<0>::value = 1;

If we substitute the base value of factorial<0> with 1, back up the chain, we have the following:

•	 factorial<1>::value = 1 * 1 = 1

•	 factorial<2>::value = 2 * 1 = 2

•	 factorial<3>::value = 3 * 2 = 6

•	 factorial<4>::value = 4 * 6 = 24

•	 factorial<5>::value = 5 * 24 = 120

The main function computes the factorial of 5 by accessing factorial<5>::value and returns it.

The recursion is terminated by the specialized template for factorial<0>, which provides the

base case. The final result is that the program returns 120, the factorial of 5.

While TMP allows for compile-time computations, it often involves complex recursive patterns

that can be difficult to read and maintain. To address these challenges, C++11 introduced the

constexpr specifier, which has become the preferred mechanism for compile-time computations.

Compile-Time Computation218

constexpr specifier
Using the constexpr specifier, we declare that it is possible to evaluate variables and functions

at compile time. There are limitations to what can be evaluated at compile time. A constexpr

variable must meet the following requirements:

•	 It needs to be of a literal type, any of the following:

•	 Scalar types such as arithmetic types, enumerations, and pointers

•	 Reference types

•	 An array of literal types

•	 Classes that meet specific requirements (such as a trivial constexpr destructor, all of

its non-static data members are literal types, or at least one constexpr constructor).

•	 It must be immediately initialized.

•	 The entire expression of its initialization needs to be a constant expression.

Let’s go through the following example to better understand the requirements for constexpr

variables:

#include <cmath>

int main () {

 constexpr int ret = round(sin(3.14));

 return ret;

}

If you run this example in Compiler Explorer using x86-64 GCC 14.2 compiler, without optimi-

zation enabled, we can observe the following:

•	 The program returns 0.

•	 The resulting assembly is small, and it just moves 0 to return the register.

•	 If you change the initialization of the ret variable so that the sine function takes 3.14/2

as the argument, the program will return 1.

Now, if we try to change the compiler in Compiler Explorer to x86-64 clang 18.1.0, we will get

the following compiler error:

<source>:4:19: error: constexpr variable 'ret' must be initialized by a
constant expression

 4 | constexpr int ret = round(sin(3.14));

 | ^ ~~~~~~~~~~~~~~~~

Chapter 11 219

<source>:4:31: note: non-constexpr function 'sin' cannot be used in a
constant expression

 4 | constexpr int ret = round(sin(3.14));

The compiler reports that we are violating the rule that says that the entire expression of its initial-

ization needs to be a constant expression, as the function sin, in the expression round(sin(3.14)),

is non-constexpr. This is because Clang’s implementation of math functions is non-constexpr,

while GCC implements them as constexpr functions. Many math functions will be constexpr

functions in the new C++26 standard.

Although the upcoming C++26 standard mandates that math functions should be constexpr,

we will utilize the current GCC implementation because it is the compiler we are using for our

STM32 target in the examples throughout this book. All constexpr functions must meet the

following requirements:

•	 Its return type must be of the literal type.

•	 Each of its parameters must be of the literal type.

•	 If a function is not a constructor, it must have only one return statement.

To better understand constexpr functions, let us implement the factorial algorithm as a constexpr

function in the following example:

constexpr unsigned int factorial(unsigned int n) {

 unsigned int prod = 1;

 while(n > 0) {

 prod *= n;

 n--;

 }

 return prod;

}

int main () {

 constexpr int calc_val = 5;

 constexpr unsigned int ret = factorial(calc_val);

 return ret;

}

Compile-Time Computation220

In this example, we implemented the factorial algorithm as a simple constexpr function. Com-

paring it to a TMP-based solution, this code looks familiar to many developers with a C background.

There is no recursion at the template level and strange syntax. C++11 constexpr functions still

relied on recursion, but C++14 relaxed constraints on constexpr functions and allowed using

local variables and loops.

If we run the preceding example in Compiler Explorer using the x86-64 GCC 14.2 compiler,

without optimization enabled, we can observe the following:

•	 The program returns 120.

•	 The resulting assembly is small, and it just moves 120 to the return register.

•	 There is no factorial function in the resulting assembly code, meaning that the compiler

executed this function at compile time. We supplied a factorial function with a constant

expression argument and the compiler evaluated the function at compile time.

•	 If we remove the constexpr specifier from the calc_val and ret variables declarations,

we will see the factorial function in the resulting assembly call, and in main, we will see

a call to this function, meaning that in this case, the factorial function is being executed

at runtime, and in the case of firmware, it will be part of the binary.

As we can see from this example, the constexpr function can be executed at both compile time

and runtime, depending on the arguments we supply it with. Next, we will go over practical ex-

amples to see how we can apply the constexpr specifier in firmware development.

Example 1 – MAC address parser
The Medium Access Control (MAC) address is used in the MAC layer of different communica-

tion stacks, including Ethernet, Wi-Fi, and Bluetooth. Here, we will create a 48-bit MAC address

compile-time parser that will help us convert a common format of a MAC address written as hex

numbers separated by a colon into an array of uint8_t, which is usually used in software stacks.

The code is shown here:

#include <array>

#include <cstdint>

#include <string_view>

#include <charconv>

struct mac_address {

 static constexpr std::size_t c_bytes_num = 6;

Chapter 11 221

 static constexpr std::size_t c_mac_addr_str_size = 17;

 std::array<uint8_t, c_bytes_num> bytes{};

 bool is_valid = false;

 constexpr mac_address(std::string_view str) {

 if (str.size() != c_mac_addr_str_size) {

 return;

 }

 for (size_t i = 0; i < c_bytes_num; ++i) {

 const std::string_view byte_str = str.substr(i * 3, 2);

 uint8_t value = 0;

 auto result = std::from_chars(byte_str.data(), byte_str.data()

 + byte_str.size(), value, 16);

 if (result.ec != std::errc()) {

 return;

 }

 bytes[i] = value;

 }

 is_valid = true;

 }

};

int main () {

 constexpr mac_address addr("00:11:22:33:44:55");

 static_assert(addr.is_valid);

 return addr.bytes.at(5);

}

In the main function, we create an instance of the struct mac_address, by providing a construc-

tor with "00:11:22:33:44:55". If we run the preceding example in Compiler Explorer using the

x86-64 GCC 14.2 compiler, without optimization enabled, we can observe the following:

•	 The program returns 85 as a decimal number. Converting it to hex format, we will get 0x55,

which corresponds to the last byte from the MAC address 00:11:22:33:44:55.

Compile-Time Computation222

•	 The resulting assembly is small. It populates the stack with bytes from the MAC address

we used in the constructor. There are no calls to the constructor, meaning it is executed

at compile time.

•	 If we change the MAC address provided in the constructor to "000:11:22:33:44:55"

or "G0:11:22:33:44:55", the compiler will generate an error due to failed static_

assert(addr.is_valid).

Let us now explain the struct mac_address in more detail:

•	 The struct contains the members std::array<uint8_t, c_bytes_num> bytes and bool

is_valid. It doesn’t contain any methods except the constructor.

•	 The constructor accepts the std::string_view class template, which encapsulates a

pointer to the first element of the provided string literal, and its size.

•	 The constructor creates substring views using the susbstr method on the string_view

object and it uses std::from_char to convert them to uint8_t values, which are stored

in the bytes array.

•	 The constructor sets the bool is_valid to true if there are no errors. Using static_assert,

we can validate at compile time that the provided MAC address string literal was con-

verted successfully. We cannot use asserts in constexpr functions. The alternative is to

throw an exception, which would result in a compile-time error, but we decided not to

use exceptions for our embedded target.

You can also run the preceding example in the Renode simulator on the STM32 target. Start Visual

Studio Code, attach it to the running container, and open the Chapter11/compile_time project,

as described in Chapter 4, and run the following commands in the Visual Studio Code terminal,

or run them directly in the container terminal:

$ cd Chapter11/compile_time

$ cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel -DMAIN_CPP_FILE_NAME=main_
constexpr_mac_address.cpp

$ cmake --build build --target run_in_renode

Here is part of the main function from the main_constexpr_mac_address.cpp file:

constexpr mac_address addr("00:11:22:33:44:55");

static_assert(addr.is_valid);

const std::array<uint8_t, 6> addr_arr{0x00, 0x11, 0x22, 0x33, 0x44, 0x55};

const auto & mac_ref = addr.bytes;

Chapter 11 223

//const auto & mac_ref = addr_arr;

printf("%02X:%02X:%02X:%02X:%02X:%02X\r\n", mac_ref[0], mac_ref[1], mac_
ref[2], mac_ref[3], mac_ref[4], mac_ref[5]);

To confirm that all the work of converting a string literal to an array is performed at compile time,

you can bind the reference mac_ref to addr_arr and compare binary sizes in both cases. They are

both 6,564 bytes, meaning that the constexpr constructor is not included in the binary as it is

actually executed at compile time by the compiler.

Next, we will go through an example of creating a lookup table for a temperature thermistor using

constexpr functions in C++.

Example 2 – Generating a lookup table
Thermistors are resistors whose resistance changes with temperature. They are commonly used

in embedded systems. They usually have a non-linear curve. There are different methods to

approximate an Analog-to-Digital Converter (ADC) reading from a thermistor into a tempera-

ture. One of the most used methods is the beta coefficient. It is calculated by measuring the

thermistor’s resistance at two temperature points. It is used to calculate temperature using the

following equation:1𝑇𝑇 = 1𝑇𝑇0   + 1𝛽𝛽 ln (𝑅𝑅𝑅𝑅0)

In this equation, T0 is a room temperature of 25oC (298.15K) and R0 is the resistance of a therm-

istor at room temperature. Using the beta coefficient (a constant provided by the manufacturer)

is a simplification of the thermistor’s curve as it relies on measuring the curve only at two points.

The Steinhart-Hart equation provides a more accurate curve-fitting method as it relies on four

coefficients calculated by measuring the thermistor at four temperature points. The equation is

shown here:1𝑇𝑇 = 𝐴𝐴 𝐴 𝐴𝐴 ln(𝑅𝑅) + 𝐶𝐶(ln(𝑅𝑅))2 + 𝐷𝐷(ln(𝑅𝑅))3

Coefficients A, B, C, and D are calculated after measuring the thermistor’s temperature at four

different temperature points – meaning these are constants that are given for a thermistor by the

manufacturer. The calculated temperature from the Steinhart-Hart equation is in Kelvins. The

drawback of the Steinhart-Hart equation is it is computationally heavy for small, embedded targets.

Compile-Time Computation224

In this example, we will create a lookup table using the Steinhart-Hart equation and rely on it to

determine temperature by reading a value from the ADC in our embedded target. As we can see

from the equation, temperature is a function of resistance and given constants. For a selected

range of resistance, and with a selected resolution, we will generate a lookup table of temperature

values. Then, we will simulate a reading of the thermistor resistance and search the lookup table

to determine the temperature.

We will select a range of resistance that we want to base the lookup table on, and the number of

points we want to use. For this, we need functionality that will generate an array of numbers in

the given range that are evenly spaced, also called linear space. Next, we will use that linear space

as an argument to a signal generator. Let’s start with implementing this as follows:

1.	 Here is the code showing the linear space generator:

#include <array>

#include <cstdio>

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

 constexpr signal() {}

 constexpr signal(T begin, T end) {

 static_assert(N > 1, "N must be bigger than 1");

 float step = (end - begin) / (N - 1);

 for (std::size_t i = 0; i < N; i++) {

 this->at(i) = begin + i * step;

 }

 }

};

int main() {

 constexpr signal<float, 10> x_axis(0, 9);

 for(auto elem: x_axis) {

 printf("%.2f, ", elem);

 }

 printf("\r\n");

 return 0;

}

Chapter 11 225

If we run this program, it will print 10 numbers in the range of 0 to 10, as shown here:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

The numbers printed are generated at compile time by the signal struct. To connect

this back to our example, imagine that these are the values of resistance for which we

want to calculate the temperature using the Steinhart-Hart equation. Let’s go through

the implementation in detail:

•	 The signal is a class template. Template parameters are typename T and

std::size_t N. They determine the array type that the struct is based on.

•	 The struct derives from std::array<T, N>. We based it on std::array to be able

to use range-based for loops easily and standard library algorithms.

•	 In the constexpr constructor, we use static_assert to make sure that N is greater

than 1, and we populate the underlying array with evenly spaced points between

begin and end.

•	 In main, we provide float and 10 as template arguments to the struct signal,

and 0 and 9 as begin and end points for the linear space to the constructor. We

use a range-based for loop to go through elements of the compile-time-generated

object x_axis and print its elements.

2.	 Next, we will expand the signal struct with an additional constructor that allows us to

create a signal based on another signal and a lambda we will use to provide a math func-

tion to generate elements of a new signal. The code for a new constructor is shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

 constexpr signal(const signal &sig, auto fun) {

 for (std::size_t i = 0; i < N; i++) {

 this->at(i) = fun(sig.at(i));

 }

 }

};

In this constructor, we initialize elements of a new signal by calling the passed fun on

elements of the passed signal sig.

Compile-Time Computation226

3.	 Now we can create a new signal, as shown in this code:

int main() {

 const auto print_signal = [](auto sig) {

 for(auto elem: sig) {

 printf("%.2f, ", elem);

 }

 printf("\r\n");

 };

 constexpr signal<float, 10> x_axis(0, 9);

 print_signal(x_axis);

 auto sine = signal(x_axis, [](float x){ return std::sin(x);});

 print_signal(sine);

 return 0;

}

If you are following the example using Compiler Explorer, make sure to include the <cmath>

header as we are using the std::sin function. Running it will give the following output:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

0.00, 0.84, 0.91, 0.14, -0.76, -0.96, -0.28, 0.66, 0.99, 0.41,

In this code, we created a new signal named sine by passing x_axis and the lambda []

(int x){return std::sin(x);} to the newly created constructor.

To connect this with the example, now we can generate a lookup table using simple math

functions (such as std::sin) and linear space generated with the signal constructor

from step 1.

Chapter 11 227

Generating a lookup table
To generate more complex functions, we need to expand the signal class with more functionality:

1.	 First, we will overload the operators * and /, to multiply signals by constants and divide

constants by elements of signal. The code is shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

 constexpr signal operator*(const T &t) const {

 return signal(*this, [&](T elem)

 { return elem * t; });

 };

 constexpr signal operator/(const T &t) const {

 return signal(*this, [&](T elem)

 { return elem / t; });

 };

 };

In this code, we overloaded the operators * and /, enabling multiplication and division

of a signal with a scalar, as in:

auto result = sig * 2.0f;

The preceding code will create a new signal called result, which will be the result of the

multiplication of every element of signal sig by scalar 2.0.

2.	 Similarly, we can create a new signal by dividing the existing signal by a scalar, as shown

here:

auto result = sig / 2.0f;

This code will create a new signal called result, which will be the result of the division

of every element of signal sig by scalar 2.0.

Compile-Time Computation228

3.	 To support scalars from the left side of operators * and /, we need to implement the global

operators operator* and operator/. We will do so by declaring them as friends to the

struct signal, as shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

 friend constexpr signal operator*(const T &t, const signal &sig)

 {

 return sig * t;

 }

 friend constexpr signal operator/(const T &t, const signal &sig)

 {

 signal ret;

 for (std::size_t i = 0; i < N; i++) {

 ret.at(i) = t / sig.at(i);

 }

 return ret;

 }

};

The friend function operator* in this code allows scalar multiplication when the scalar

is on the left-hand side (scalar * signal), which is not possible with the member function

alone. As multiplication has a commutative property (a * b = b * a), we simply call the

member function operator* and return the result (return sig * t).

4.	 In the friend function operator/, we perform the following steps:

1.	 Create a new signal, ret.

2.	 Iterate over the elements of the signal sig, and for each element, the scalar t is

divided by the element.

3.	 We return the signal ret.

5.	 By overloading the operators * and / both as global and as member functions, we can

now create signals as in the following example:

int main() {

 // ...

 constexpr signal<float, 10> x_axis(0, 9);

Chapter 11 229

 print_signal(x_axis);

 auto linear_fun = 2.f * x_axis;

 print_signal(linear_fun);

 auto linear_fun2 = linear_fun / 2.f;

 print_signal(linear_fun2);

 return 0;

}

This code will result in the following output:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

0.00, 2.00, 4.00, 6.00, 8.00, 10.00, 12.00, 14.00, 16.00, 18.00,

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

As we can see from this output, the originally created x_axis, representing linear space

from 0 to 9.00 with 10 points, is multiplied by 2.0 to create linear_fun. Then we divide

linear_fun by 2.0 to create linear_fun2, which matches the x_axis.

6.	 To be able to write the full Steinhart-Hart equation, we also need to overload operators

+ and -, as shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

 constexpr signal operator+(const T &t) const {

 return signal(*this, [&](T elem)

 { return elem + t; });

 };

 constexpr signal operator-(const T &t) const {

 return signal(*this, [&](T elem)

 { return elem - t; });

 };

 constexpr signal operator+(const signal &sig) const {

 signal ret;

 for (std::size_t i = 0; i < N; i++)

Compile-Time Computation230

 {

 ret.at(i) = this->at(i) + sig.at(i);

 }

 return ret;

 };

 friend constexpr signal operator+(const T &t, const signal &sig)

 {

 return sig + t;

 }

};

In this code, we overload the following operators:

•	 A member constexpr signal operator+(const T &t), allowing us to add a

scalar to a signal (signal + scalar)

•	 A member constexpr signal operator-(const T &t), allowing us to subtract

a scalar from a signal (signal - scalar)

•	 A member constexpr signal operator+(const signal &sig), allowing us to

add two signals, element by element (signal1 + signal2)

•	 Global constexpr signal operator+(const T &t, const signal &sig), al-

lowing us to add a signal to a scalar (scalar + signal)

Writing a signal representing the Steinhart-Hart equation
Now we have all the elements we need to write a signal that represents the Steinhart-Hart equa-

tion, as shown here:

int main()

{

 constexpr float A = 1.18090254918130e-3;

 constexpr float B = 2.16884014794388e-4;

 constexpr float C = 1.90058756197216e-6;

 constexpr float D = 1.83161892641824e-8;

 constexpr int c_lut_points = 50;

 constexpr signal<float, c_lut_points> resistance(1e3, 10e3);

 constexpr auto temperature_k =

Chapter 11 231

 1 / (A +

 B * signal(resistance, [](float x)

 { return std::log(x); }) +

 C * signal(resistance, [](float x)

 { return std::pow(std::log(x), 2); }) +

 D * signal(resistance, [](float x)

 { return std::pow(std::log(x), 3); }));

 constexpr auto temperature_celsius = temperature_k - 273.15f;

 std::ofstream file("out.csv");

 file << "Resistance[Ohm], Temperature[Celsius]\n";

 for (int i = 0; i < c_lut_points; i++) {

 file << resistance[i] << ", " << temperature_celsius[i] << "\n";

 }

 return 0;

}

This code generates points from the Steinhart-Hart equation through the following steps:

1.	 Define the A, B, C, and D coefficients.

2.	 Create values for resistance in the range 1 to 10 kOhms across 50 points.

3.	 Calculate values of temperature in Kelvins using the Steinhart-Hart equation in points from

the generated resistance signal. We convert temperature to Celsius by subtracting 273.15.

4.	 Save the values from the generated resistance and temperature signals into a CSV file (file

operations require including the <fstream> header).

You can run the full example in a Docker container. Start Visual Studio Code, attach it to the run-

ning container, and open the Chapter11/signal_generator project, as described in Chapter 4,

and then run the following commands in the Visual Studio Code terminal, or run them directly

in the container terminal:

$ cd Chapter11/signal_generator

$ cmake -B build

$ cmake --build build

$./build/signal_gen

Compile-Time Computation232

Running the example will result in a CSV file being created (out.csv). We can generate an image

from the created CSV file using the following command in the terminal:

$ graph out.csv -o curve.png

We can transfer the generated image using the docker cp command from the host machine:

$ docker cp dev_env:/workspace/Cpp-in-Embedded-Systems/Chapter11/signal_
generator/curve.png

This command will transfer the generated image curve.png to the host machine. We can also

see the same image here:

Figure 11.1 – Steinhart-Hart curve

Figure 11.1 depicts the calculated Steinhart-Hart curve. Values for resistance and temperature

were generated at compile time using the signal struct. Next, we will use the generated curve

in Renode to read a temperature from a simulated thermistor using the ADC. Here is an image of

a circuit showing how the thermistor is connected to the microcontroller:

Figure 11.2 – Thermistor circuit

Chapter 11 233

Figure 11.2 depicts a voltage divider with a thermistor. If we measure the voltage on the ADC pin,

we can calculate the thermistor’s resistance using the following equation:𝑅𝑅𝑇𝑇 = 𝑅𝑅2 (𝑉𝑉𝑐𝑐𝑐𝑐𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 − 1)

In the preceding equation:

•	 RT is the calculated resistance of the thermistor.

•	 R2 is the resistance of a resistor with a known value.

•	 VCC is the power supply voltage.

•	 VADC is the voltage measured by the ADC.

We can model a voltage divider using a simple struct in C++, shown here:

struct voltage_divider {

 units::resistance r2;

 units::voltage vcc;

 units::resistance get_r1(units::voltage vadc) {

 return r2 * (vcc/vadc - 1);

 }

 };

voltage_divider divider{10e3_Ohm, 3.3_V};

This code shows the struct voltage_divider. We will go through its details:

•	 It uses strong type resistance and voltage defined in namespace units. You can check the

implementation details for these strong types in the project folder, Chapter11/compile_

time/util.

•	 We instantiate an object of voltage_divider using list initialization as in voltage_divider

divider{10e3_Ohm, 3.3_V}. 10e3_Ohm and 3.3_V are user-defined literals for types

resistance and voltage.

•	 The struct has a single method, units::resistance get_r1(units::voltage vadc).

It calculates the R1 value from a voltage divider circuit based on the provided voltage on

ADC. In our case, this is the thermistor’s resistance.

Compile-Time Computation234

Analyzing the usage example firmware code
Next, we will go through the firmware code in a while loop in the main function from Chapter11/

compile_time/app/src/main_lookup_table.cpp. It is shown here:

auto adc_val = adc.get_reading();

if(adc_val) {

 auto adc_val_voltage = *adc_val;

 auto thermistor_r = divider.get_r1(adc_val_voltage);

 auto it = std::lower_bound(resistance.begin(),

 resistance.end(), thermistor_r.get());

 if(it != resistance.end()) {

 std::size_t pos = std::distance(resistance.begin(), it);

 float temperature = temperature_celsius.at(pos);

 printf("%d mV, %d Ohm, %d.%d C\r\n",

 static_cast<int>(adc_val_voltage.get_mili()),

 static_cast<int>(thermistor_r.get()),

 static_cast<int>(temperature),

 static_cast<int>(10*(temperature-std::floor(temperature))));

 }

 }

hal::time::delay_ms(200);

Let us analyze this code in detail:

1.	 We are calling the get_reading method on the object adc. It is of type hal::adc_stm32,

and it returns std::expected<units::voltage, adc::error>. It is an error-handling

technique that we covered in Chapter 7. You can check the implementation details of the

adc_stm32 class in the project folder, Chapter11/compile_time/hal/adc.

2.	 If the call to get_reading was successful, we dereference the returned object to get ac-

cess to the voltage, which we pass to voltage_divider's get_r1 method to calculate the

thermistor’s value.

3.	 Next, we use the algorithm std::lower_bound to get an iterator to the first element in the

resistance signal that is not ordered before calculating the thermistor’s value. If we find

such an element, we calculate its position using std::distance, and index temperature_

celsius to get the temperature value.

Chapter 11 235

4.	 Finally, we print the ADC’s voltage, the thermistor’s resistance, and the temperature

value. Note that we printed the float value of temperature using ints, as printing floats

increases the binary size of the firmware.

To run the firmware in the Renode simulator on the STM32 target, start Visual Studio Code, at-

tach it to the running container, and open the Chapter11/compile_time project, as described

in Chapter 4, then run the following commands in the Visual Studio Code terminal, or run them

directly in the container terminal:

$ cd Chapter11/compile_time

$ cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel -DMAIN_CPP_FILE_NAME=main_
lookup_table.cpp

$ cmake --build build --target run_in_renode

To simulate voltage on the ADC, please enter the following command in the terminal running

Renode:

$ adc FeedVoltageSampleToChannel 0 1700 3

The preceding command will feed a voltage of 1700 mV to the ADC in three successive readings.

This will result in the following output:

1699 mV, 9412 Ohm, 26.2 C

This command shows that for a value of 1700 mV on the ADC, we calculated a thermistor value of

9412 Ohms, resulting in a temperature of 26.20C. As an exercise, feed the simulation with different

ADC voltage values and compare the results with the curve graph from previous steps.

The constexpr specifier is a flexible tool in C++ allowing us to run a function at both compile

time and runtime. If we want to make sure that a function is evaluated only at compile time, we

can use the consteval specifier.

consteval specifier
The consteval specifier may be applied only to functions. It specifies that a function is a so-called

immediate function and that every call to it must result in a compile-time constant. Let’s go

through the following simple example:

constexpr int square(int x) {

 return x*x;

}

int main() {

Compile-Time Computation236

 constexpr int arg = 2;

 int ret = square(arg);

 return ret;

}

If you run this example in Compiler Explorer using the x86-64 GCC 14.2 compiler, without op-

timization enabled, we can observe the following:

•	 The program returns 4.

•	 The resulting assembly is small, and it just moves 4 to the return register.

•	 Removing the constexpr specifier from the variable arg will result in the function square

being generated and a call to it in the main function.

Now, let’s change the function square constexpr specifier to consteval, as shown here:

consteval int square(int x) {

 return x*x;

}

int main() {

 constexpr int arg = 2;

 int ret = square(arg);

 return ret;

}

If you run the program in Compiler Explorer, it will return 4 and result in small assembly code.

However, if we now remove the constexpr specifier from the variable arg, the compilation will

fail with the following error:

<source>: In function 'int main()':

<source>:7:21: error: call to consteval function 'square(arg)' is not a
constant expression

 7 | int ret = square(arg);

 | ~~~~~~^~~~~

<source>:7:21: error: the value of 'arg' is not usable in a constant
expression

<source>:6:9: note: 'int arg' is not const

 6 | int arg = 2;

 | ^~~

Chapter 11 237

The consteval specifier ensures that a function is evaluated only at compile time. This prevents the

function from being accidentally run at runtime, which could happen with a constexpr function.

Summary
In this chapter, we explored techniques for compile-time computation in C++. We covered the

basics of TMP and provided an in-depth explanation of the constexpr specifier, using examples

relevant to embedded systems.

With the knowledge from this chapter, you can generate lookup tables and convert human-read-

able addresses, UUIDs, and similar data into arrays used by communication stacks, all at compile

time. This allows you to write expressive code that generates complex mathematical signals

without consuming extra memory or processing time.

Next, we will go over the techniques used in writing a HAL in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

Part 4
Applying C++ to Solving

Embedded Domain
Problems

This part focuses on applying everything you’ve learned by solving problems from the embedded

domain. You will go through writing a type-safe, compile-time checked HAL, learn how to work

effectively with C libraries, and study design patterns such as Adapter, State, and Command.

You will also learn how to apply RAII to manage resources like the file system. The part wraps

up with an overview of libraries and frameworks useful for embedded development and a look

at the SOLID principles.

This part has the following chapters:

•	 Chapter 12, Writing C++ HAL

•	 Chapter 13, Working with C Libraries

•	 Chapter 14, Enhancing Super-Loop with Sequencer

•	 Chapter 15, Practical Patterns – Building a Temperature Publisher

•	 Chapter 16, Designing Scalable Finite State Machines

•	 Chapter 17, Libraries and Frameworks

•	 Chapter 18, Cross-Platform Development

12
Writing C++ HAL

A Hardware Abstraction Layer (HAL) is a core software component in embedded projects. It

simplifies interactions with hardware peripherals by providing an easy-to-use interface that

abstracts the hardware details. The HAL manages the reading and writing of memory-mapped

peripheral registers, allowing you to use peripherals such as GPIOs, timers, and serial commu-

nication interfaces, without dealing directly with low-level hardware specifics. It often supports

multiple devices within the same family.

By using a HAL, firmware becomes more portable across different devices and similar families

from the same vendor. It hides the register layouts of memory-mapped peripherals, making it

easier to reuse drivers and business logic on various devices. The HAL handles platform-specific

details, enabling developers to focus on the application rather than hardware nuances. It also

manages differences among different series of microcontrollers (MCUs).

It’s recommended to use vendor-provided HALs, typically delivered as C libraries, because they

are well-tested and regularly maintained. Still, in some cases, it may be needed to work directly

with memory-mapped peripherals, thus, in this chapter, we will explore C++ techniques that can

help you write safer and more expressive HALs. In this chapter, we will cover the following topics:

•	 Memory-mapped peripherals

•	 Timers

Writing C++ HAL242

Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter12). To get the most out of this chapter, run the

examples in the Renode simulator.

Memory-mapped peripherals
Memory-mapped peripherals allow programs to control hardware devices by reading from and

writing to specific memory addresses. Both peripheral registers and RAM are mapped to the same

address space, making communication with hardware registers as simple as writing and reading

to a pointer that points to those locations.

In previous examples in this book, we used an ST-provided HAL written in C, which controls

hardware peripherals through Common Microcontroller Software Interface Standard (CMSIS)

headers.

CMSIS is a vendor-independent HAL and software library collection for Arm Cortex-based micro-

controllers. Developed by Arm, it standardizes hardware access and configuration, simplifying

software development and improving code portability across different manufacturers. Each micro-

controller vendor provides its own CMSIS implementation, adapting the core APIs and drivers to

their specific devices. Next, we will explore CMSIS implementation of access to memory-mapped

peripherals for the STM32F072 microcontroller.

CMSIS memory-mapped peripherals
Access to registers in CMSIS is modeled through pointers to structs that describe register layout.

CMSIS defines macros representing pointers to memory-mapped peripherals.

Structs, according to CMSIS naming conventions, are named using the peripheral name abbre-

viation and _TypeDef postfix. The reset and clock control (RCC) peripheral struct is named

RCC_TypeDef. It is defined in example projects in the platform/CMSIS/Device/ST/STM32F0xx/

Include/stm32f072xb.h file, as shown here:

typedef struct

{

 __IO uint32_t CR; /* Address offset: 0x00 */

 __IO uint32_t CFGR; /* Address offset: 0x04 */

 __IO uint32_t CIR; /* Address offset: 0x08 */

 __IO uint32_t APB2RSTR; /* Address offset: 0x0C */

 __IO uint32_t APB1RSTR; /* Address offset: 0x10 */

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter12
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter12

Chapter 12 243

 __IO uint32_t AHBENR; /* Address offset: 0x14 */

 __IO uint32_t APB2ENR; /* Address offset: 0x18 */

 __IO uint32_t APB1ENR; /* Address offset: 0x1C */

 __IO uint32_t BDCR; /* Address offset: 0x20 */

 __IO uint32_t CSR; /* Address offset: 0x24 */

 __IO uint32_t AHBRSTR; /* Address offset: 0x28 */

 __IO uint32_t CFGR2; /* Address offset: 0x2C */

 __IO uint32_t CFGR3; /* Address offset: 0x30 */

 __IO uint32_t CR2; /* Address offset: 0x34 */

} RCC_TypeDef;

In the same header file, along with the RCC_TypeDef struct, the following macros are defined:

#define PERIPH_BASE 0x40000000UL

/*!< Peripheral memory map */

#define APBPERIPH_BASE PERIPH_BASE

#define AHBPERIPH_BASE (PERIPH_BASE + 0x00020000UL)

/*!< AHB peripherals */

#define RCC_BASE (AHBPERIPH_BASE + 0x00001000UL)

/*!< Peripheral_declaration */

#define RCC ((RCC_TypeDef *) RCC_BASE)

This code is part of the CMSIS header stm32f072xb.h, and it’s all we need to configure the RCC

register. We are setting up clock configuration in the SystemInit function, which is called before

the main function (as you were able to see in Chapter 4). The following code snippet is from the

SystemInit function:

/* Set HSION bit */

RCC->CR |= (uint32_t)0x00000001U;

In this code, we are setting up the HSION bit of the clock control register (CR) or the RCC peripheral,

and we know we are doing that because of the comment in the code. Also, nothing is preventing

us from setting CR to any random value. Here is an example of usage of the clock configuration

register (CFGR) from the RCC peripheral:

/* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0]
and PLLNODIV bits */

RCC->CFGR &= (uint32_t)0x08FFB80CU;

Writing C++ HAL244

This code sets PLL division, various prescaler, and clock settings. It’s not quite obvious which

settings are applied from the hex value 0x08FFB80CU.

Even though this approach is common, there are several issues with modeling access to peripherals

using register structs and a pointer pointing to the peripheral’s base address:

•	 The first is reduced readability. We can write arbitrary uint32_t values in hex format,

making the code meaningless and requiring us to refer to reference manuals of micro-

controllers.

•	 As we can write any value we want to a register, we can easily write wrong or even ran-

dom values.

•	 Individual registers of a peripheral in a struct must be ordered according to their memory

layout. Members named RESERVERDn are used to add space into the structure for adjusting

the addresses of the peripheral registers and to prevent padding.

•	 CMSIS headers may contain macros defining bit masks for accessing individual settings

in a register, which simplifies access to peripheral registers. Still, these macros are not

making the code any safer, just easier to work with.

Let’s see how we can utilize C++ to address these concerns, making the code safer and more

readable.

Memory-mapped peripherals in C++
We will use the knowledge we gained in previous chapters to create an expressive and type-safe

interface to access memory-mapped peripherals in C++. We will create an interface with the

following qualities:

•	 Read and write access control to a hardware register

•	 Type-safe write to a register

•	 Expressive and easy to use

Let us start with a basic implementation of an interface representing a memory-mapped register

that will match the CMSIS approach in functionality. The code is shown here:

struct read_access{};

struct write_access{};

struct read_write_access : read_access, write_access {};

template<std::uintptr_t Address, typename Access = read_write_access,
typename T = std::uint32_t>

Chapter 12 245

struct reg {

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<read_access, Access_>, T>

read()

{

 return *reinterpret_cast<volatile T*>(Address);

}

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<write_access, Access_>, void>

write(T val)

{

 reinterpret_cast<volatile T>(Address) = val;

}

};

In this code, the class template reg models a hardware register. It has the following template

parameters:

•	 uintptr_t Address: The memory address of the hardware register

•	 typename Access: The access rights for the register (defaults to read_write_access)

•	 typename T: The data type matching the size of the register (defaults to std::uint32_t)

The class template reg has two static methods: read and write. These are used to read from and

write to a register, respectively. Both methods are enabled or disabled at compile time using

SFINAE, which we covered in Chapter 8. We are using the following types of access control:

•	 struct read_access

•	 struct write_access

•	 struct read_write_access: This inherits from both read_access and write_access

To enable and disable write and read methods at compile time using SFINAE, we made both

methods template functions. This allows us to use the class template enable_if at the return

type of these methods to either enable or disable them, depending on the condition provided to it.

The template parameter for both write and read is Access_, which defaults to Access. It ensures

that SFINAE works correctly by making the substitution dependent on a template parameter of

the function itself.

Writing C++ HAL246

We are enabling the read method using std::enable_if_t<std::is_base_of_v<read_access,

Access_>, T>. This means that if std::is_base_of_v<read_access, Access_> is true (i.e., if

Access_ is derived from or is the same as read_access), std::enable_if_t resolves to T, and the

function is enabled. Otherwise, it results in a substitution failure, and the function is not included

in the overload set. We are enabling the write method in a similar fashion, by checking whether

Access_ type is derived from or the same as write_access.

We use reinterpret_cast<volatile T*> to convert the integer template parameter Address

into a pointer to a volatile variable of type T (which defaults to std::uint32_t). The volatile

keyword informs the compiler that the value at this memory location can change at any time

outside the program’s control – by hardware. This prevents the compiler from applying certain

optimizations that might omit necessary reads or writes to this address.

Without volatile, the compiler might assume that multiple reads from the same address yield

the same value or that writes to the address can be reordered or even omitted, which can lead to

incorrect behavior when interacting with hardware.

As we discussed in Chapter 9, casting an integer to a pointer using reinterpret_cast is consid-

ered an implementation-defined behavior in C++. This means the C++ standard doesn’t specify

exactly how it should work, and different compilers or platforms might handle it differently.

Writing directly to a specific memory location is inherently unsafe and relies on behavior that

isn’t guaranteed to be portable across all systems. Therefore, we need to be cautious about the

portability of this solution, as some platforms may implement pointer conversions differently.

Here are a few examples of using the class template reg:

using rcc = reg<0x40021000>;

auto val = rcc::read(); // ok

rcc::write(0xDEADBEEF); // ok

using rcc_read = reg<0x40021000, read_access>;

auto val = rcc_read::read(); // ok

rcc_read::write(0xDEADBEEF); // compiler-error, no write access

using rcc_write = reg<0x40021000, write_access>;

auto val = rcc_write::read(); // compiler-error, no read access

rcc_write::write(0xDEADBEEF); // ok

Chapter 12 247

These examples demonstrate the usage of the implemented interface for accessing memo-

ry-mapped peripherals. When defining types using the class template reg, we provide it with

the address of a register and write access if we are working with write-only or read-only registers.

The default access type allows us both read and write privileges.

The preceding solution is as effective as the CMSIS approach. You can experiment with the full

example and compare binary sizes by running the full example in Renode. Start Visual Studio

Code, attach it to the running container, open the Chapter12/cpp_hal project as described in

Chapter 4, and run the following commands in the Visual Studio Code terminal, or run them

directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
basic_reg.cpp

$ cmake --build build --target run_in_renode

Our current solution still allows us to write arbitrary values to registers. To address this, we will

use strong types based on enum classes to model bit fields used to set different settings in registers.

Type-safe memory-mapped peripherals in C++
To prevent arbitrary writings to a register using the class template reg, we will add a new static

method, set, which will accept only types meeting certain criteria. We will model these types by

creating a BitFieldConcept. We covered concepts in Chapter 8. Also, we will remove public access

to the write method and put it instead in the private section. The modified code is shown here:

template<typename BitField, typename Reg, typename T>

concept BitFieldConcept =

 std::is_same_v<Reg, typename BitField::reg> &&

 std::is_enum_v<typename BitField::value> &&

 std::is_same_v<std::underlying_type_t<typename

BitField::value>, T>;

template<std::uintptr_t Address, typename Access = read_write_access,
typename T = std::uint32_t>

struct reg {

using RegType = T;

 // Type alias for the current instantiation

Writing C++ HAL248

using ThisReg = reg<Address, Access, T>;

template<typename BitField>

requires BitFieldConcept<BitField, ThisReg, T>

static void set(BitField::value bits_val)

{

 auto reg_value = read();

 reg_value &= ~BitField::c_mask;

 reg_value |= (static_cast<T>(bits_val) <<

 BitField::c_position) & BitField::c_mask;

 write(reg_value);

}

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<read_access, Access_>, T>

read()

{

 return *reinterpret_cast<volatile T*>(Address);

}

private:

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<write_access, Access_>, void>

write(T val)

{

 reinterpret_cast<volatile T>(Address) = val;

}

};

The template method set has a single template parameter – type BitField. We use BitFieldConcept

to impose the following requirements on the BitField:

•	 Reg must be the same as BitField::reg. This ensures the bit field is associated with the

correct register.

•	 BitField::value must be an enum.

•	 The underlying type of the BitField::value enum must be T. This ensures that values

represented by the enum can fit in the registers.

Chapter 12 249

The set function parameter is BitField::value bits_val. The function itself is simple, and it

performs the following operations:

•	 Reads the current register value

•	 Clears the bits specified by BitField::c_mask

•	 Sets the new bits by shifting bits_val to the correct position (BitField::c_position)

and applying the mask

•	 Writes the modified value back to the register

To use the set function, we need to define types that describe the register’s bit fields and that

meet the requirements imposed by the BitFieldConcept.

Modeling HSION and HSITRIM bit fields from the RCC register
Let us examine bit fields in the RCC CR register defined in the STM32F0x2 reference manual

document, as shown in Figure 12.1:

Figure 12.1 – RCC CR register

Figure 12.1 depicts bit fields in the RCC CR register. Let us define a struct hsion that describes the

HSI clock enable bit field from the RCC CR register. It has only one bit on position 0, so we can

model it as follows:

using rcc = reg<0x40021000>;

struct hsion {

 using reg = rcc;

 using T = reg::RegType;

 static constexpr T c_position = 0U;

 static constexpr T c_mask = (1U << c_position);

 enum class value : T {

 disable = 0U,

Writing C++ HAL250

 enable = 1U,

 };

};

In this code, we declare type rcc as an instance of the class template reg by providing it with the

address of the RCC register. Then, we create a struct hsion with the following properties:

•	 A public typedef member reg, which we set to rcc. This “maps” hsion to the rcc register

thanks to BitFieldConcept.

•	 The constexpr variables c_position and c_mask, used for bit manipulation by the set

method.

•	 An enum class value, defining enable and disable.

We can use the hsion struct to enable or disable the HSI clock using the following code:

rcc::set<hsion>(hsion::value::enable);

rcc::set<hsion>(hsion::value::disable);

This code allows us to safely set bits in a register. It is also expressive: the syntax rcc::set<hsi

on>(hsion::value::enable); clearly communicates the intent – setting the hsion bit field to

enable on the rcc register.

As we can see in Figure 12.1, most of the defined bit fields in the CR register are enable/disable

bits. Exceptions are:

•	 HSICAL[7:0]: HSI clock calibration: These bits are automatically initialized at startup

and can be adjusted by software via the HSITRIM setting.

•	 HSITRIM[4:0]: HSI clock trimming: These bits offer an additional user-programmable

trimming value added to the HSICAL[7:0] bits. This setting allows adjustments for voltage

and temperature variations that may affect the HSI frequency.

HSICAL bits are initialized at startup, meaning we shouldn’t modify them. HSITRIM bits are us-

er-programmable, and they occupy 5 bits. Defining all combinations of 5 bits in the BitField

value enum wouldn’t be practical, so we will approach this by providing value through a template

parameter, as shown in the code here:

template<auto Bits>

struct hsi_trim {

 using reg = rcc;

 using T = reg::RegType;

Chapter 12 251

 static_assert(std::is_same_v<T, decltype(Bits)>);

 static constexpr T c_position = 3;

 static constexpr T c_mask = (0x1F << c_position);

 static_assert(Bits <= 0x1F);

 enum class value : T {

 val = Bits

 };

};

In this code, we defined the class template hsitrim with the auto template parameter Bits.

The auto keyword is used to indicate that we are using a non-type template parameter. We use

static_assert to make sure that the type of provided parameter Bits (decltype(Bits)) is the

same as the underlying registers type to satisfy requirements imposed by BitFieldConcept.

We encode the enum class value val with the Bits. This encodes the value in the type itself and

makes it possible to use it with the reg struct set method. We also utilize static_assert to

make sure that the provided value fits in the allocated number of bits – static_assert(Bits <=

0x1F). Again, we are utilizing compile-time operations to ensure type safety. Here is an example

of using the hsitrim struct:

rcc::set<hsi_trim<0xFLU>>(hsi_trim<0xFLU>::value::val);

This code sets the hstrim value in the rcc register to 0xF. You can experiment with the full exam-

ple in Renode. Start Visual Studio Code, attach it to the running container, open the Chapter12/

cpp_hal project, as described in Chapter 4, and run the following commands in the Visual Studio

Code terminal, or run them directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
type_safe_reg.cpp

$ cmake --build build --target run_in_renode

Writing C++ HAL252

Generic versions of hsion and hsi_trim
To enable the reuse of bit fields that have a single bit (enable/disable) such as hsion, we will

define the class template reg_bits_enable_disable, as shown here:

template<typename Reg, uint32_t Pos>

struct reg_bits_enable_disable {

 using reg = Reg;

 using T = reg::RegType;

 static constexpr T c_position = Pos;

 static constexpr T c_mask = (0x1UL << c_position);

 enum class value : T {

 disable = 0,

 enable = 1

 };

};

This defined template type, reg_bits_enable_disable, could be used to define the hsion type,

as shown in the following code:

using hsion = reg_bits_enable_disable<rcc, 0U>;

Next, we will create a generic version of the type used to set multiple fields with a value, such as

hsi_trim. We will call it reg_bits, and the code is shown here:

template<auto Bits, typename Reg, uint32_t Mask, uint32_t Pos = 0>

struct reg_bits {

 using reg = Reg; using T = reg::RegType;

 static_assert(std::is_same_v<T, decltype(Bits)>);

 static constexpr T c_position = Pos;

 static constexpr T c_mask = (Mask << c_position);

 static_assert(Bits <= Mask);

Chapter 12 253

 enum class value : T {

 val = Bits

 };

};

We could use the generic type reg_bits to define the hsi_trim template type, as shown here:

template<auto Bits>

using hsi_trim = reg_bits<Bits, rcc, 0x1F, 3U>;

Next, we will explore how to use C++ to create templates for peripherals that are similar but also

have some implementation differences.

Timers
STM32F072 has multiple timers, including TIM2 and TIM3. TIM2 is a 32-bit timer and TIM3 is a

16-bit timer.

We will create a template class timer that will depend on timer traits structures containing tim-

er-specific details. Here is the code for timer traits structures:

struct timer2_traits {

 constexpr static std::uintptr_t base_address = 0x40000000;

 constexpr static IRQn_Type irqn = TIM2_IRQn;

 constexpr static std::uint32_t arr_bit_mask = 0xFFFFFFFF;

};

struct timer3_traits {

 constexpr static std::uintptr_t base_address = 0x40000400;

 constexpr static IRQn_Type irqn = TIM3_IRQn;

 constexpr static std::uint32_t arr_bit_mask = 0xFFFF;

};

Writing C++ HAL254

In this code, timer2_traits and timer3_traits are traits structures that encapsulate the hard-

ware-specific details of TIM2 and TIM3 timers, respectively. They have the following members:

•	 base_address: The base memory address of the timer’s register map

•	 irqn: The interrupt request number associated with the timer

•	 arr_bit_mask: The bit mask for the auto-reload register (ARR):

•	 For TIM2, it’s 0xFFFFFFFF (32-bit timer).

•	 For TIM3, it’s 0xFFFF (16-bit timer).

Next, let’s look at the template class timer:

template <typename TimerTraits>

struct timer {

 constexpr static std::uintptr_t base_address =

 TimerTraits::base_address;

 using cr1 = reg<base_address + 0x00>;

 using dier = reg<base_address + 0x0C>;

 using sr = reg<base_address + 0x10>;

 using psc = reg<base_address + 0x28>;

 using arr = reg<base_address + 0x2C>;

 template<auto Bits>

 using psc_bits = reg_bits<Bits, psc, static_cast<uint32_t>(0xFFFF)>;

 template<auto Bits>

 using arr_bits = reg_bits<Bits, arr, TimerTraits::arr_bit_mask>;

 using uie = reg_bits_enable_disable<dier, 0UL>;

 using cen = reg_bits_enable_disable<cr1, 0UL>;

 using uif = reg_bits_enable_disable<sr, 0UL>;

 template<std::uint32_t Period>

 static void start() {

Chapter 12 255

 // a magic number prescaler value

 // for 1ms timer resolution

 constexpr std::uint32_t prescaler = 9999;

 constexpr std::uint32_t auto_reload = Period - 1;

 psc::template set<psc_bits<prescaler>>

 (psc_bits<prescaler>::value::val);

 arr::template set<arr_bits<auto_reload>>

 (arr_bits<auto_reload>::value::val);

 dier::template set<uie>(uie::value::enable);

 NVIC_SetPriority(TimerTraits::irqn, 1);

 NVIC_EnableIRQ(TimerTraits::irqn);

 cr1::template set<cen>(cen::value::enable);

 }

};

In this code, we defined a template class timer with template parameter TimerTraits – a traits

class that provides hardware-specific constants. The timer class template provides a generic

interface to configure and control timers, customized for each specific timer via TimerTraits.

Please note that for the sake of simplicity of the example, this is the minimum code needed to

set up the STM32 timer peripheral.

Within the timer class, we define register type aliases, as follows:

constexpr static std::uintptr_t base_address = TimerTraits::base_address;

using cr1 = reg<base_address + 0x00>;

using dier = reg<base_address + 0x0C>;

using sr = reg<base_address + 0x10>;

using psc = reg<base_address + 0x28>;

using arr = reg<base_address + 0x2C>;

These type aliases represent the timer’s hardware registers, each mapped to a specific memory

address. Each register is an instantiation of the reg class template, which provides read/write

access to hardware registers.

Writing C++ HAL256

Next, we define type aliases for BitFields:

template<auto Bits>

using psc_bits = reg_bits<Bits, psc, static_cast<uint32_t> (0xFFFF)>;

template<auto Bits>

using arr_bits = reg_bits<Bits, arr, TimerTraits::arr_bit_mask>;

using uie = reg_bits_enable_disable<dier, 0UL>;

using cen = reg_bits_enable_disable<cr1, 0UL>;

using uif = reg_bits_enable_disable<sr, 0UL>;

In this code, we instantiate bit fields using the class templates reg_bits and reg_bits_enable_

disable.

Finally, we define the template static method start in the class template timer. This static func-

tion sets up the timer with the desired period and starts it. The code executes the following steps:

1.	 Calculate Prescaler and Auto-Reload values. The function uses the template parameter

Period to calculate these values.

2.	 Set Prescaler (PSC) and Auto-Reload (ARR) registers.

3.	 Enable the update interrupt on the DIER register. It uses the uie bit field to enable the

update interrupt in the DIER register.

4.	 Configure NVIC for timer interrupts using CMSIS functions.

5.	 Start the timer. It uses the cen bit field to enable the timer counter in the CR1 register.

Let’s now see how we can use the provided timer template class:

using timer2 = timer<timer2_traits>;

using timer3 = timer<timer3_traits>;

extern "C" void TIM2_IRQHandler(void)

{

 if (timer2::sr::read() & TIM_SR_UIF)

 {

 timer2::sr::set<timer2::uif> (timer2::uif::value::disable);

 printf("TIM2 IRQ..\r\n");

 }

}

extern "C" void TIM3_IRQHandler(void)

Chapter 12 257

{

 if (timer3::sr::read() & TIM_SR_UIF)

 {

 timer3::sr::set<timer3::uif> (timer3::uif::value::disable);

 printf("TIM3 IRQ..\r\n");

 }

}

int main()

{

 timer2::start<1000>();

 timer3::start<500>();

 while(true)

 {

 }

}

In this code, we create the type aliases timer2 and timer3 and implement Interrupt Request

(IRQ) functions for the TIM2 and TIM3 interrupts. In the IRQs, we clear interrupt flags. We make

calls to start functions of types timer2 and timer3 in the main function.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running container,

open the Chapter12/cpp_hal project, as described in Chapter 4, and run the following commands

in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
timer_peripheral.cpp

$ cmake --build build --target run_in_renode

In this section, we learned how to create a generic, template-based timer interface by utiliz-

ing C++ templates and traits classes. By defining TimerTraits structures (timer2_traits and

timer3_traits) that encapsulate hardware-specific details of the TIM2 and TIM3 timers, we can

instantiate a flexible timer class template that abstracts the configuration and control of different

timers. This approach offers two main benefits: it increases type safety by using templates to en-

force correct usage at compile time, and it results in code that is as efficient as traditional C HAL

implementations because the use of templates and constexpr allows the compiler to optimize

the code thoroughly.

Writing C++ HAL258

Summary
In this chapter, we learned techniques that we can apply to create safer HAL code in C++. We

covered the implementation of memory-mapped peripherals. The design utilizes templates and

advanced techniques such as SFINAE, which we discovered in Chapter 8. We applied the knowl-

edge from previous chapters in the embedded systems domain.

We also learned how to design classes that implement generic behavior and depend on traits

classes to supply them with specific details. The code we developed is as efficient as a hand-cod-

ed (CMSIS-based) solution, thanks to the usage of templates and compile-time computations,

enabling compiler optimizations.

In the next chapter, we will cover working with C libraries in C++.

13
Working with C Libraries

In Chapter 6, we discussed interoperability between C and C++. We learned about language

linkage and how to use it to include C libraries in a C++ project. From the technical standpoint,

that’s all we need to use C in C++.

In this chapter, we’ll focus on software development techniques for integrating C libraries into a

C++ project to enhance code flexibility. Since many C++ projects still rely on vendor-provided C

hardware abstraction layers (HALs), we’ll concentrate on how to effectively incorporate these

C libraries into our projects.

Additionally, this chapter will cover the Resource Acquisition is Initialization (RAII) paradigm

and explain why it’s particularly beneficial in embedded systems. By automatically managing

resource allocation and deallocation, RAII greatly reduces the risk of leaks and other resource

misuse issues, which is especially important in resource-limited embedded environments.

In this chapter, we’re going to cover the following main topics:

•	 Using C HAL in C++ projects

•	 Static classes

•	 Using RAII for wrapping LittleFs C library

Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter13). To get the most out of this chapter, run the

examples in the Renode simulator.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter13
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter13

Working with C Libraries260

Using C HAL in C++ projects
In Chapter 12, we explored the benefits of using C++ for HAL development. However, despite these

advantages, target vendors provide HALs as C libraries. These libraries have been thoroughly

tested on millions of devices worldwide, and vendors usually maintain them well, offering reg-

ular updates. Thus, it makes more sense to use them rather than re-implement the HAL in C++.

Next, we will create an interface-based design for the UART peripheral, which will provide us

with a more flexible software design and allow us to decouple components that are using the

UART interface from low-level details.

UART interface for flexible software design
In Chapter 5, we covered the importance of interfaces for flexible software design. There, we had an

uart interface class that was implemented by the uart_stm32 class. The gsm_lib class depended

on the uart interface, meaning we can reuse it with different uart interface implementations.

The uart_stm32 class from Chapter 5 had a simple implementation for demo purposes. It used

the printf and putc functions from the C standard library to write messages on standard output.

We will now go through the actual implementation of the uart_stm32 class that’s already been

used in all the examples in the book’s GitHub repo, enabling us to see the output in the Renode

simulator. Let’s start from the uart interface class with the code shown here:

#include <cstdint>

#include

namespace hal

{

class uart

{

 public:

 virtual void init(std::uint32_t baudrate) = 0;

 virtual void write(std::span<const char> data) = 0;

};

}; // namespace hal

Chapter 13 261

The uart interface is a simple class with two virtual methods:

•	 virtual void init(std::uint32_t baudrate): A method used to initialize the UART

peripheral with a single parameter – baudrate.

•	 virtual void write(std::span<const char> data): A method used to send data over

the UART peripheral. It has a std::span<const char> parameter in contrast to the usual

C approach with a pointer to the data buffer and length. Using std::span increases the

memory safety of the code.

Next, let us go through the uart_stm32 class definition:

#include

#include <cstdint>

#include <uart.hpp>

#include <stm32f0xx_hal.h>

#include <stm32f072xb.h>

namespace hal

{

class uart_stm32 : public uart

{

 public:

 uart_stm32(USART_TypeDef *inst);

 void init(std::uint32_t baudrate = c_baudrate_default);

 void write(std::span<const char> data) override;

 private:

 UART_HandleTypeDef huart_;

 USART_TypeDef *instance_;

 std::uint32_t baudrate_;

 static constexpr std::uint32_t c_baudrate_default = 115200;

};

}; // namespace hal

Working with C Libraries262

In the uart_stm32 class definition, we can notice the following:

•	 Overridden virtual methods init and write from the uart interface.

•	 A constructor accepting a pointer to USART_TypeDef. This type is a struct that describes

the UART peripheral register layout in the CMSIS header stm32f072xb.h.

•	 Among the private members, we see UART_HandleTypeDef, a type defined in ST HAL in

the file stm32f0xx_hal_uart.h.

Next, let us go through the implementation of the constructor and methods from the uart_stm32

class in this code:

hal::uart_stm32::uart_stm32(USART_TypeDef *inst): instance_(inst)

{

}

In this code, we see the implementation of the uart_stm32 constructor. It just sets the private

member USART_TypeDef *instance_ using the initializer list syntax. CMSIS defines the macros

USART1, USART2, USART3, and USART4, which specify the addresses of these peripherals and which

we can use to initialize the uart_stm32 object.

The uart interface defines the init method, as UART peripheral initialization depends on other

hardware initializations (i.e., clock configuration). If we implemented the initialization within

the constructor, we might run into issues if someone defines a global or static uart_stm32

object. The init method is shown here:

void hal::uart_stm32::init(std::uint32_t baudrate)

{

 huart_.Instance = instance_;

 huart_.Init.BaudRate = baudrate;

 huart_.Init.WordLength = UART_WORDLENGTH_8B;

 huart_.Init.StopBits = UART_STOPBITS_1;

 huart_.Init.Parity = UART_PARITY_NONE;

 huart_.Init.Mode = UART_MODE_TX_RX;

 huart_.Init.HwFlowCtl = UART_HWCONTROL_NONE;

 huart_.Init.OverSampling = UART_OVERSAMPLING_16;

 huart_.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

 huart_.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;

 huart_.MspInitCallback = nullptr;

 HAL_UART_Init(&huart_);

}

Chapter 13 263

In the init method, we initialize the member UART_HandleTypeDef huart_ with the following

configuration:

•	 instance_: The address to the UART peripheral selected in the constructor

•	 baudrate

•	 8-bit word length

•	 1 stop bit

•	 Both TX and RX mode

•	 No hardware control

We also set MspInitCallback to nullptr. We make a call to the ST HAL HAL_UART_Init function

providing it with a pointer to huart_. Please note that for the sake of example simplicity, there

is no error handling. Error handling is an important step, and return codes from HAL should be

appropriately handled in code.

Next, we will go through the implementation of the write method shown here:

void hal::uart_stm32::write(std::span<const char> data)

{

 // we must cast away constness due to ST HAL’s API

 char * data_ptr = const_cast<char *>(data.data());

 HAL_UART_Transmit(&huart_,

 reinterpret_cast<uint8_t *(data_ptr),

 data.size(),

 HAL_MAX_DELAY);

}

In the write method, we are making a call to HAL_UART_Transmit from ST HAL, by passing the

data pointer and data size from the std::span<const char> data parameter. It’s worth noting

that we need to cast away constness as the C HAL_UART_Transmit function doesn’t accept the

const pointer to data. This is only safe to do if we are sure that the function we are passing the

pointer with cast away constness is not trying to modify its content.

Next, we will analyze this approach from the perspective of software design and patterns used.

Working with C Libraries264

The UART interface in the Adapter pattern
The relationship between all the software components in this example (the uart interface, the

uart_stm32 implementation of the interface, and the ST HAL) can be represented by the following

UML diagram:

Figure 13.1 – The uart_stm32 class diagram

In Figure 13.1, we see the UML class diagram of the uart_stm32 class. This class effectively im-

plements the Adapter design pattern, which is a structural design pattern used to allow classes

with incompatible interfaces to work together. The Adapter pattern involves creating an adapter

class that wraps an existing class (or module) and provides a new interface that the client expects.

In our case, even though stm32f0xx_hal_uart is a C module rather than a C++ class, the uart_

stm32 class serves as an adapter by encapsulating the C-based HAL code and exposing it through

the C++ uart interface. This adaptation allows other classes or clients in the system, such as a

GSM library, to interact with the UART hardware using the standardized C++ interface, without

needing to concern themselves with the underlying C implementation details.

Chapter 13 265

Let us analyze this approach from the perspective of the uart interface client, such as a GSM library

that is implemented in the gsm_lib class, with this definition:

class gsm_lib{

 public:

 gsm_lib(hal::uart &u) : uart_(u) {}

 // other methods

 private:

 hal::uart &uart_;

};

In this code, we see an example of a simple client of the uart interface – gsm_lib – with a con-

structor that initializes the reference hal::uart &uart_. This approach is called dependency

injection. The dependency of the gsm_lib class is constructed externally and supplied to the class

as a reference through the constructor. Depending on the interface also enables loose coupling,

which brings the following benefits:

•	 gsm_lib is not interested in the implementation details of the uart interface. It doesn’t

need to know about baud rate, hardware settings, etc.

•	 gsm_lib is not tied to a particular target. We can reuse it on different platforms by imple-

menting the uart interface on those platforms.

•	 Software testing of gsm_lib is easy as we can mock the uart interface and instantiate the

gsm_lib object with the mocked object used in tests.

Instead of directly using the C HAL library in the uart_stm32 class, we can wrap the functions

from the C library in a so-called static class with the direct mapping of all parameters.

Introducing static classes
The static class concept that we will discuss here doesn’t exist in the C++ language standard.

We are borrowing it from languages such as C#, where it is defined as a class that contains only

static members and methods. It can’t be instantiated. In C#, a static class is declared using

the static keyword.

In C++, a static class can be created by defining a class with all static methods and members

and by deleting the default constructor. Deleting the constructor ensures that no instances of

the class can be created, enforcing this at compile time. Disabling instantiation signals a clear

intent to the user: This is a static class. The functions you’re using don’t rely on any instance-specific

states, as no instances exist. If there’s any internal state, it’s shared and will affect everyone using the class.

Working with C Libraries266

We will modify the previous example and create a uart_c_hal static class to wrap UART C HAL

functions, as shown in this code:

struct uart_c_hal {

 uart_c_hal() = delete;

 static inline HAL_StatusTypeDef init(UART_HandleTypeDef *huart)

 {

 return HAL_UART_Init(huart);

 }

 static inline HAL_StatusTypeDef transmit(UART_HandleTypeDef *huart,

 uint8_t *pData,

 uint16_t Size,

 uint32_t Timeout)

 {

 return HAL_UART_Transmit(huart, pData, Size, Timeout);

 }

};

In this code, we simply mapped C functions in static methods of the class uart_c_hal. Next, we

will modify the uart_stm32 class to use uart_c_hal, as shown here:

template <typename HalUart>

class uart_stm32 : public uart

{

 public:

 uart_stm32(USART_TypeDef *inst) : instance_(inst) {}

 void init(std::uint32_t baudrate = c_baudrate_default) override {

 huart_.Instance = instance_;

 huart_.Init.BaudRate = baudrate;

 // ...

 // init huart_ struct

 HalUart::init(&huart_);

 }

 void write(std::span<const char> data) override {

 // we must cast away costness due to ST HAL’s API

 char * data_ptr = const_cast<char *>(data.data());

Chapter 13 267

 HalUart::transmit(&huart_,

 reinterpret_cast<uint8_t *(data_ptr),

 data.size(),

 HAL_MAX_DELAY);

 }

 private:

 UART_HandleTypeDef huart_;

 USART_TypeDef *instance_;

 std::uint32_t baudrate_;

 static constexpr std::uint32_t c_baudrate_default = 115200;

};

In this code, we see that uart_stm32 is now a template class that uses the methods init and

transmit from the template parameter HalUart. Now we can use the class template, as shown here:

uart_stm32<uart_c_hal> uart(USART2);

uart.init();

gsm_lib gsm(uart);

The uart_stm32 class template still implements the uart interface, meaning we can still use it

with the gsm_lib class. Wrapping C HAL functions in a static class and adjusting uart_stm32 to

use it through a template parameter decouples C HAL from the uart_stm32 implementation. This

makes it possible to test the uart_stm32 class off-target, as it doesn’t depend on platform-specific

code anymore.

Static classes are one way of using C libraries in C++ projects. They allow us to encapsulate func-

tions from C libraries in types that can be passed to C++ classes through template arguments,

making the code more flexible and easier to test.

Next, we will see how to apply the RAII technique to effectively wrap the little fail-safe (littlefs)

filesystem C library.

Using RAII for wrapping the littlefs C library
RAII is a simple yet powerful C++ technique used to manage resources through an object’s lifetime.

Resources can represent different things. Resources are acquired when an object’s lifetime begins,

and they are released when the object’s lifetime ends.

Working with C Libraries268

The technique is used to manage resources such as dynamically allocated memory. To ensure

that the memory is released and avoid memory leaks, the recommendation is to use dynamic

allocation only internally in classes. When an object is instantiated, the constructor will allocate

memory, and when the object goes out of scope, the destructor will release the allocated memory.

The RAII technique can be applied to other resources beyond the dynamically allocated memo-

ry, such as files, and we will apply it to the littlefs filesystem library (https://github.com/

littlefs-project/littlefs). We will start with a short overview of littlefs – a filesystem

designed for microcontrollers.

LittleFS – a filesystem for microcontrollers
The littlefs filesystem is designed for microcontrollers featuring the following:

•	 Power-loss resilience: It is built to handle unexpected power failures. In the case of power

loss, it will fall back to the last known good state.

•	 Dynamic wear leveling: It is optimized for flash memory, offering wear leveling across

dynamic blocks. It also includes mechanisms to detect and bypass bad blocks, ensuring

reliable performance over time.

•	 Bounded RAM/ROM: It is optimized for low memory usage. RAM consumption remains

constant, regardless of filesystem size, with no unbounded recursion. Dynamic memory

is limited to configurable buffers, which can be set up as static.

We will first go through the basic usage of littlefs and then see how we can apply RAII in a C++

wrapper class. We will go through an example of using littlefs that will:

•	 Format and mount filesystem.

•	 Create a file, write some content to it, and then close it.

•	 Open a file, read content from it, and then close it.

The full example is contained in Chapter13/lfs_raii/app/src/main.cpp. Let us start with code

that formats and mounts the filesystem, as shown here:

lfs_t lfs;

const lfs_config * lfs_ramfs_cfg = get_ramfs_lfs_config();

lfs_format(&lfs, lfs_ramfs_cfg);

lfs_mount(&lfs, lfs_ramfs_cfg);

https://github.com/littlefs-project/littlefs
https://github.com/littlefs-project/littlefs

Chapter 13 269

This code performs the following steps:

•	 It declares a filesystem object named lfs of type lfs_t. This object will be used to interact

with the littlefs filesystem. It holds the state of the filesystem and is required for all

subsequent filesystem operations.

•	 The function get_ramfs_lfs_config() returns a pointer to the lfs_config structure

that contains all the necessary configuration parameters for littlefs to operate on a

RAM storage medium. This includes function pointers for reading, writing, and erasing, as

well as parameters like block size, block count, and cache size. In the project setup, we are

using a portion of RAM as the storage medium. The RAM-based littlefs configuration

is defined in the C file Chapter13/lfs_raii/app/src/lfs_ramfs.c.

•	 It formats the storage medium to prepare it for use with littlefs. The lfs_format func-

tion initializes the filesystem structures on the storage medium. This process erases any

existing data and sets up the necessary metadata structures. Formatting is typically done

once before the first use of the filesystem or when resetting it.

•	 It mounts the filesystem to make it ready for file operations. The lfs_mount function

initializes the filesystem state in RAM based on the existing structures on the storage me-

dium. This step is necessary before performing any file operations like reading or writing.

Next, let us go over creating a file and writing some data to it. The code is shown here:

lfs_file_t file;

if(lfs_file_open(&lfs, &file, “song.txt”, LFS_O_WRONLY | LFS_O_CREAT) >= 0)

{

 const char * file_content = “These are some lyrics!”;

 lfs_file_write(&lfs,

 &file,

 reinterpret_cast<const void *>(file_content),

 strlen(file_content));

 lfs_file_close(&lfs, &file);

}

This code performs the following steps:

•	 Declares a file object named file of type lfs_file_t. This object represents a file within

the littlefs filesystem. It holds the state of the file and is required for performing file

operations like reading and writing.

Working with C Libraries270

•	 Attempts to open a file named “song.txt” for writing using the function lfs_file_open.

The function is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object, initialized and mounted earlier.

•	 &file: A pointer to the file object that will be associated with the opened file.

•	 “song.txt”: The name of the file to open.

•	 LFS_O_WRONLY | LFS_O_CREAT: Flags specifying to open the file in write-only

mode, and to create a file if it doesn’t exist already.

•	 If the lfs_file_open function returns a non-negative value, the code attempts

to write some data to it using the lfs_file_write function.

•	 We declare the content to write as a file_content string literal.

•	 The function lfs_file_write is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object.

•	 &file: A pointer to the file object associated with the opened file.

•	 reinterpret_cast<const void *>(file_content): Casts the character string

to a const void* pointer as required by the function.

•	 strlen(file_content): The number of bytes to write, calculated based on the

length of the string.

•	 Closes the file after writing to ensure data integrity. lfs_file_close flushes any pending

writes to the storage medium and releases resources associated with the file.

After writing data to a file, we will attempt to open the same file in read mode and read the data

from it. The code for reading a file is shown here:

if(lfs_file_open(&lfs, &file, “song.txt”, LFS_O_RDONLY)>= 0) {

 std::array<char, 64> buff = {0};

 lfs_file_read(&lfs,

 &file,

 reinterpret_cast<void *>(buff.data()),

 buff.size() - 1);

 printf(“This is content from the file\r\n%s\r\n”, buff.data());

 lfs_file_close(&lfs, &file);

}

Chapter 13 271

This code performs the following steps:

•	 Attempts to open the file “song.txt” for read-only access using the function lfs_file_

open and providing it with the flag LFS_O_RDONLY.

•	 If the lfs_file_open function returns a non-negative value, the code attempts to read

data from the opened file.

•	 std::array<char, 64> buff = {0} declares an array named buff with a fixed size of

64 characters and initializes all elements to zero (‘\0’), ensuring the buffer is null-ter-

minated if treated as a C string.

•	 Reads data from opened files in the buff array using the function lfs_file_read. The

function is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object.

•	 &file: A pointer to the file object associated with the opened file.

•	 reinterpret_cast<const void *>(buff.data()): Casts the buff underlying

data array pointer to a const void* pointer as required by the function.

•	 buff.size() – 1: The number of bytes to read from the file. Subtracting 1 reserves space

for a null terminator (‘\0’) at the end of the string.

•	 Closes the file after reading to ensure data integrity.

You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the

running container, open the Chapter13/lfs_raii project, as described in Chapter 4, and run the

following commands in the Visual Studio Code terminal, or run them directly in the container

terminal:

$ cd Chapter13/lfs_raii

$ cmake -B build

$ cmake --build build --target run_in_renode

Introducing an RAII-based C++ wrapper
Now, we will wrap the littlefs functionality in a simple C++ wrapper applying the RAII tech-

nique. We will create an fs namespace with types lfs and file in it. Let us start with the lfs

struct code shown here:

namespace fs{

struct lfs {

Working with C Libraries272

 lfs() = delete;

 static inline lfs_t fs_lfs;

 static void init() {

 const lfs_config * lfs_ramfs_cfg = get_ramfs_lfs_config();

 lfs_format(&fs_lfs, lfs_ramfs_cfg);

 lfs_mount(&fs_lfs, lfs_ramfs_cfg);

 }

};

};

The purpose of the struct lfs is to:

•	 Hold an instance of a filesystem object named fs_lfs of type lfs_t used to interact with

the littlefs filesystem.

•	 Implement the static method init used to initialize the filesystem by calling the lfs_

format and lfs_mount functions. The init method must be called before any file oper-

ations are performed.

Next, let’s go over the file class definition:

namespace fs{

class file {

public:

 file(const char * filename, int flags = LFS_O_RDONLY);

 ~file();

 [[nodiscard]] bool is_open() const;

 int read(std::span<char> buff);

 void write(std::span<const char> buff);

private:

 bool is_open_ = false;

 lfs_file_t file_;

};

};

Chapter 13 273

This code shows methods and data members of the class file. Next, we will go through them,

starting with the constructor shown here:

file(const char * filename, int flags = LFS_O_RDONLY) {

 if(lfs_file_open(&lfs::fs_lfs, &file_, filename, flags) >= 0) {

 is_open_ = true;

 }

}

The file constructor shown opens a file with the specified filename and flags. It sets is_open_

to true if the file opens successfully. Next, let’s go over the destructor shown here:

~file() {

if(is_open_) {

 printf(“Closing file in destructor.\r\n”);

 lfs_file_close(&lfs::fs_lfs, &file_);

 }

}

The destructor shown will close the file if it’s already opened. It calls lfs_file_close to close the

file and release resources. The constructor and destructor implement the RAII technique – creating

an object will acquire resources, and when the object’s lifetime ends, the destructor will release

them. Next, let’s go over the read and write methods:

int read(std::span<char> buff) {

return lfs_file_read(&lfs::fs_lfs,

 &file_,

 reinterpret_cast<void *>(buff.data()),

 buff.size() - 1);

}

int write(std::span<const char> buff) {

return lfs_file_write(&lfs::fs_lfs,

 &file_,

 reinterpret_cast<const void *>(buff.data()),

 buff.size());

}

Working with C Libraries274

The read and write methods are simple wrappers for the lfs_file_read and lfs_file_write

functions. Both read and write use std::span as function parameters for increased type safety

and better flexibility, as we can simply provide it with std::array.

Cleaner file management with RAII
Now, we will see how we can use the fs and file wrappers to work with the littlefs filesystem.

The code is shown here:

fs::lfs::init();

{

 fs::file song_file(“song.txt”, LFS_O_WRONLY | LFS_O_CREAT);

 if(song_file.is_open()) {

 song_file.write(“These are some lyrics!”);

 // destructor is called on song_file object

 // ensuring the file is closed

}

We first initialize the filesystem by calling fs::lfs::init(). Next, we introduce local scope to

demonstrate a call to destructor and perform the next steps:

•	 Open “song.txt” for writing (creating it if it doesn’t exist).

•	 Write a string literal in the file if it was opened successfully.

•	 Upon exit from the scope, the destructor is called, ensuring the file is closed.

Next, we will open the file and read data from it. The code is shown here:

fs::file song_file(“song.txt”);

std::array<char, 64> buff = {0};

if(song_file.is_open()) {

 song_file.read(buff);

 printf(“This is content from the file\r\n%s\r\n”,

 buff.data());

}

This code performs the next steps:

•	 Opens “song.txt” for reading (default mode).

•	 Declares std::array<char, 64> buff, initialized to zeros.

•	 Reads the data from the file in buff if the file is opened successfully.

Chapter 13 275

You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the

running container, open the Chapter13/lfs_raii project, as described in Chapter 4, and run the

following commands in the Visual Studio Code terminal, or run them directly in the container

terminal:

$ cd Chapter13/lfs_raii

$ cmake -B build -DMAIN_CPP_FILE_NAME=main_lfs_raii.cpp

$ cmake --build build --target run_in_renode

The simple C++ wrapper we wrote for the littlefs library applies RAII principles, ensuring proper

handling of resources as the destructor is called when an object’s lifetime ends. This ensures the

file is closed even when there are multiple return paths from a code. It also simplifies the devel-

opment experience as the code is less verbose and cleaner. The usage of std:span increases safety.

Summary
In this chapter, we covered several techniques for using C libraries in C++ projects. By wrapping

C code in C++ classes, we can organize our code better in loosely coupled software modules. C++

increases type safety and compile-time features allow us to easily organize C wrappers in static

classes.

Applying RAII is simple and provides us with a powerful mechanism that takes care of resource

management, as we saw in the example of the littlefs filesystem.

In the next chapter, we will go over super-loop in bare metal firmware and see how we can en-

hance it with mechanisms such as sequencer in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

14
Enhancing Super-Loop with
Sequencer

Super-loop is the basic software architecture of bare-metal firmware. It is an infinite loop that

executes tasks (functions) often conditioned by flags set in an Interrupt Service Routine (ISR).

As the complexity of business logic increases, so does the size of a super loop, which can quickly

turn into a spaghetti mess. To solve this problem within bare-metal constraints (no operating

system), we can use a sequencer.

A sequencer stores and executes tasks (functions) in an organized fashion. Instead of setting a

flag in an ISR, checking it in a super loop, and executing a function if a flag is set, we simply add

a task to a sequencer from the ISR. The super loop then runs the sequencer, which executes the

added tasks. Tasks in the sequencer can be prioritized, so the sequencer will execute higher-pri-

ority tasks first.

In this chapter, we’re going to cover sequencer design and implementation through the following

main topics:

•	 Super-loop and motivation for a sequencer

•	 Designing a sequencer

•	 Storing a callable

•	 Implementing a sequencer

Enhancing Super-Loop with Sequencer278

Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter14). To get the most out of this chapter, run the

examples in the Renode simulator.

Super-loop and motivation for a sequencer
Before we get into the design and implementation of a sequencer, we will first analyze the lim-

itations of a super loop. In a usual super-loop scenario, we check flags that are set from an ISR.

Below is an example pseudocode of a super loop:

bool data_read_ready = false;

bool data_send_timeout = false;

int main() {

 // initialize hardware

 while(1) {

 if(data_read_ready) {

 sensor_data_read_and_buffer();

 data_read_ready = false;

 }

 if(data_send_timeout) {

 data_send_from_buffer();

 data_send_timeout = false;

 }

 if(!data_read_ready && !data_send_timeout) {

 enter_sleep();

 }

 }

}

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter14
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter14

Chapter 14 279

In the preceding pseudocode, we perform the following steps:

1.	 Check the Boolean flag data_read_ready and, if it is set, we execute the function sensor_

data_read_and_buffer. We then reset the data_read_ready flag.

2.	 Check the Boolean flag data_send_timeout and, if it is set, we execute the function data_

send_from_buffer. We then reset the data_send_timeout flag.

3.	 Both the data_read_ready and data_send_timeout flags are set from an ISR. In our ex-

ample, this might be the timer’s ISR.

4.	 Finally, we check if both flags are false, and if they are, we enter sleep mode.

The example we discussed is simple, but as the number of flags grows, so does the size of the super

loop, the number of global variables (flags), and the possibility of a mistake such as resetting a

flag or forgetting to include it in the if statement, which provides the conditions for entering

sleep mode.

Now, imagine we wanted to prioritize functions executed in the super loop. Using the current

approach would be difficult. Adding a priority variable and checking it in if statements might

work initially, but the code would quickly become messy and difficult to maintain.

To address issues of a super loop in a bare-metal environment, we will utilize a sequencer. Instead

of defining global flags and setting them from an ISR, we will add tasks to the sequencer from an

ISR. Each task will include priority information, enabling the sequencer to organize them in an

internal queue based on their priority.

In the main loop, the sequencer runs repeatedly. It handles tasks by always picking the highest-pri-

ority one from the queue and executing it first, keeping task management efficient and orderly.

Next, we will proceed with the design of the sequencer.

Enhancing Super-Loop with Sequencer280

Designing a sequencer
We will base the sequencer design on a command pattern that we covered in Chapter 10. In the

command pattern, a sequencer will take the role of invoker. In our design, we’ll use the term task

instead of command. This task is equivalent to a function – it represents a specific unit of func-

tionality – not a task as defined in operating systems.

Figure 14.1 – Sequencer design – UML diagram

Chapter 14 281

Figure 14.1 depicts a UML diagram of a sequencer. We can see it takes the role of a sequencer in the

command pattern, as described earlier. Instead of a command interface and concrete command,

this UML design uses a std::function class template (we used the same approach in the GPIO

Interrupt manager example of Chapter 10).

The sequencer class holds an array of tasks, which are used to store callable objects. The sequencer

provides a simple interface, with just two methods:

•	 void add(task t): The method used to add a task to the sequencer

•	 void run(): The method used to take a task with the highest priority, execute it, and

remove it from the sequencer

Before we go into the implementation of sequencer methods, we will first go over the task class

and alternatives to std::array for storing tasks. The task class represents a unit of functionality

that will be executed by a sequencer according to priority. It has the following members:

•	 std::function<void()> the_task_: An actual callable that will be executed

•	 std::uint8_t priority_: Priority according to which tasks will be sorted in the se-

quencer’s storage

Below is the code that implements the task class:

template<typename CallableHolder>

class task {

public:

 constexpr static std::uint8_t c_prio_default = 250;

 constexpr static std::uint8_t c_prio_max = 255;

 constexpr static std::uint8_t c_prio_min = 0;

 task(CallableHolder the_task, std::uint8_t prio = c_prio_default) :

 the_task_(the_task), priority_(prio) {}

 void execute() {

 if(the_task_) {

 the_task_();

 }

 }

 bool operator<(const task &rhs) const

 {

Enhancing Super-Loop with Sequencer282

 return priority_ < rhs.priority_;

 }

private:

 CallableHolder the_task_;

 std::uint8_t priority_ = c_prio_default;

};

This code implements the task as a class template, allowing us to use it with different callable

holders. The one we introduced in the book previously is std::function. The class template task

has the following members:

•	 A constructor that initializes the the_task_ member, which is type CallableHolder

•	 The void execute() method, which calls operator() on the_task_

•	 operator<, which compares task by priority

This code demonstrates the usage of the class template task:

 using callable_holder = std::function<void()>;

 auto fun_a = []() {

 printf("High priority task!\r\n");

 };

 task<callable_holder> task_a(fun_a, 255);

 auto fun_b = []() {

 printf("Low priority task!\r\n");

 };

 task<callable_holder> task_b(fun_b, 20);

 if(task_a < task_b) {

 task_b.execute();

 }

 else {

 task_a.execute();

 }

Chapter 14 283

In this example, we instantiate the class template task with std::function<void()>. We create

two objects, task_a and task_b, and then execute one with higher priority by using operator<

to compare them. Task objects in this example are initialized with lambdas, which are internally

stored in std::function<void()>. If you run the preceding example, you will see the following

output:

High priority task!

As you can see, the task with higher priority was executed thanks to the overloaded operator<.

In Chapter 10, we saw that the class template std::function can resort to dynamic memory

allocation to store lambdas that are captured. To mitigate this concern, we will introduce the

Embedded Template Library (ETL), a library that defines a set of containers and algorithms

whose operations are deterministic and don’t use dynamic memory allocation. The ETL will be

discussed more in Chapter 17.

Storing a callable
Instead of std::function, we can use etl::delegate – a callable holder from the ETL. One of its

limitations is it doesn’t work with capturing lambdas. This may affect the code expressiveness,

but it provides us with equivalent functionality that allows us to capture different callables. This

code demonstrates using the class template task with etl::delegate:

 using callable_etl = etl::delegate<void()>;

 using task_etl = task<callable_etl>;

 class test {

 public:

 test(int x) : x_(x) {}

 void print() const {

 printf("This is a test, x = %d.\r\n", x_);

 }

 void static print_static() {

 printf("This is a static method in test.\r\n");

 }

 private:

 int x_ = 0;

Enhancing Super-Loop with Sequencer284

 };

 test test_1(42);

 task_etl task_member_fun(callable_etl::create<test, &test::print>

 (test_1));

 task_member_fun.execute();

 task_etl task_static_fun(callable_etl::create<test::print_static>());

 task_static_fun.execute();

 task_etl task_lambda([](){

 printf("This is non capturing lambda!\r\n");

 });

 task_lambda.execute();

This code demonstrates how we can use etl::delegate to store a callable:

•	 callable_etl::create<test, &test::print>(test_1) creates etl::delegate using

the template method create instantiated with the class test and its member print

•	 callable_etl::create<test::print_static>() creates etl::delegate using the tem-

plate method create instantiated with the static method print_static

•	 task_lambda([](){ printf("This is non capturing lambda!\r\n");}); initializes

etl::delegate with the provided non-capturing lambda

Running the preceding example will result in the following output:

This is a test, x = 42.

This is a static method in test.

This is non capturing lambda!

You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the

running container, open the Chapter14/sequencer project, as described in Chapter 4, and run

the following commands in the Visual Studio Code terminal, or run them directly in the container

terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

cmake --build build --target run_in_renode

Chapter 14 285

We have alternative implementations for callable storage – std::function from the standard

library, or the more embedded-friendly etl::delegate from ETL. Next, let us consider options

for a container for storing the tasks inside the sequencer.

In the UML diagram in Figure 14.1, the sequencer is using std::array to store tasks. This implies

that sorting the elements of an array according to the priority is handled by the sequencer itself.

Instead of implementing this manually, we can use std::priority_queue – a container adapter

from the standard library.

std::priority_queue is a template class that is used as an adapter for another container, which

provides a random access iterator and the following methods:

•	 front()

•	 push_back()

•	 pop_back()

We could use std::vector from the standard library, as it meets all the requirements imposed

by std::priority_queue. As you know, std::vector uses dynamic memory allocation, which

doesn’t make it a good fit for most of the embedded applications.

ETL provides a fixed-size implementation of a vector with a similar interface as standard library

implementation. This makes it compatible with the priority queue. This code demonstrates using

etl::vector with std::priority_queue:

 std::priority_queue<int, etl::vector<int, 6>> pq{};

 pq.push(12);

 pq.push(6);

 pq.push(16);

 pq.push(8);

 pq.push(1);

 pq.push(10);

 printf("priority queue elements:\r\n");

 while(!pq.empty()) {

 printf("top element: %d, size: %d\r\n", pq.top(), pq.size());

 pq.pop();

 }

Enhancing Super-Loop with Sequencer286

This code performs the following steps:

1.	 std::priority_queue<int, etl::vector<int, 6>> pq{} defines a priority queue, pq,

with the underlying container etl::vector<int, 6>, which is a fixed size vector of size 6.

2.	 pq.push(12) inserts an element (12) in the priority queue, pq, and sorts the queue.

3.	 Using the push method, we add 5 more elements in the queue – 6, 16, 8, 1, and 10.

4.	 With while(!pq.empty()), we run a while loop until the priority queue is empty.

5.	 Inside the while loop, we print the top element, which we access using the top() method,

and size using the size() method. Then, we pop the top element from the queue using

pop().

Running the preceding code will result in the following output:

priority queue elements:

top element: 16, size: 6

top element: 12, size: 5

top element: 10, size: 4

top element: 8, size: 3

top element: 6, size: 2

top element: 1, size: 1

As you can see from the output, the elements in the priority queue are sorted. This makes it a

good solution for storing tasks that can be sorted thanks to the overloaded operator<. You can

run the full example in the Renode simulator. Start Visual Studio Code, attach it to the running

container, open the Chapter14/sequencer project, as described in Chapter 4, and run the following

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

-DMAIN_CPP_FILE_NAME=main_pq.cpp

cmake --build build --target run_in_renode

Now that we have all the elements we need for the sequencer, we will proceed with the imple-

mentation.

Chapter 14 287

Implementing a sequencer
In this chapter, we introduced etl::delegate – an alternative to std::function and fixed size

vector implementation from ETL. As ETL avoids dynamic memory allocation, we will use these

components for the implementation of the sequencer. Below is an updated UML diagram:

Figure 14.2 – UML sequencer diagram using ETL components

Figure 14.2 depicts a UML diagram of the sequencer using delegate and vector ETL components

and the priority queue from the standard library. This code implements sequencer:

template<typename Task, std::size_t Size>

struct sequencer {

Enhancing Super-Loop with Sequencer288

 sequencer() = delete;

 static void add(Task task) {

 if(pq.size() < Size) {

 __disable_irq();

 pq.push(task);

 __enable_irq();

 }

 }

 static void run() {

 if(!pq.empty()) {

 __disable_irq();

 auto task = pq.top();

 pq.pop();

 __enable_irq();

 task.execute();

 }

 }

private:

 static inline std::priority_queue<Task, etl::vector<Task, Size>> pq{};

};

In this code, sequencer is implemented as a static template class with Task and Size as template

parameters. This allows us to use it with either std::function or etl::function-based tasks

and to define the size of the ETL vector. sequencer has the following members:

•	 static inline std::priority_queue<Task, etl::vector<Task, Size>> pq{}: A

private static priority queue based on an ETL vector.

•	 static void add(Task task): A static method used to add tasks to the queue using the

push method, guarded by disabling and enabling interrupts, as it can be called from an ISR.

•	 static void run(): A static method used to take the top element from the queue and

execute it. Access to the queue is guarded by disabling and enabling interrupts.

Chapter 14 289

Below is an example of using the sequencer:

 using callable_etl = etl::delegate<void()>;

 using task_etl = task<callable_etl>;

 class test {

 public:

 test(int x) : x_(x) {}

 void print() const {

 printf("This is a test, x = %d.\r\n", x_);

 }

 void static print_static() {

 printf("This is a static method in test.\r\n");

 }

 private:

 int x_ = 0;

 };

 test test_1(42);

 task_etl task_member_fun(callable_etl::create<test, &test::print>

 (test_1), 20);

 task_etl task_static_fun(callable_etl::create<test::print_static>(), 30);

 task_etl task_lambda([](){

 printf("This is non capturing lambda!\r\n");

 }, 10);

 using seq = sequencer<task_etl, 16>;

 seq::add(task_member_fun);

 seq::add(task_static_fun);

 seq::add(task_lambda);

 while(true)

 {

 seq::run();

 }

Enhancing Super-Loop with Sequencer290

In this code, we do the following:

•	 Instantiate the etl::delegate-based tasks task_member_fun, task_static_fun, and

task_lambda.

•	 We add tasks to the sequencer using the sequencer add method.

•	 We run the sequencer in the main while loop using the method run().

Running the preceding code will result in the following output:

This is a static method in test.

This is a test, x = 42.

This is non capturing lambda!

As we can see in this code, the tasks are executed according to the assigned priority. You can run

the full example in Renode. Start Visual Studio Code, attach it to the running container, open the

Chapter14/sequencer project, as described in Chapter 4, and run the following commands in the

Visual Studio Code terminal, or run them directly in the container terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

-DMAIN_CPP_FILE_NAME=main_seq.cpp

cmake --build build --target run_in_renode

Running the example in the simulator should provide the same console output. I invite you to

explore the sequencer by adding tasks from the timer or external interrupts.

A sequencer offers a better alternative to a super loop by organizing tasks in a strictly sequential,

prioritized manner. Deterministic behavior needs to be assured through task implementation.

For instance, in the case of real-time requirements, each task must include internal monitoring

to guarantee it meets the necessary real-time constraints.

Summary
In this chapter, we examined the common problems with a basic super loop, which motivated

our move toward a sequencer design. We covered sequencer design in detail and introduced ETL

components etl::delegate – callable holder which is an alternative to std::function – and a

fixed size vector, which are both great fits for embedded applications as they don’t use dynamic

memory allocation.

In the next chapter, we will learn about the observer pattern and apply it to a temperature-read-

ing application.

15
Practical Patterns – Building a
Temperature Publisher

Design patterns are tools for solving common problems. So far, we have covered a few design

patterns in this book, such as the Command and Adapter patterns. In this chapter, we will go

over the Observer pattern and apply it to a common problem in embedded systems – handling

temperature readings in different parts of the system.

We will start by looking at the Observer pattern and how it can be implemented at runtime. This

pattern is particularly useful when multiple components need to react to changes in data from

a central source. Imagine a temperature sensor in an embedded device that reports changes to

multiple listeners. This could be part of a smart thermostat, an industrial machine monitor, or

an HVAC control board – each with components such as a screen, a logger, or a fan controller that

react to temperature updates.

Next, we will transition to a compile-time implementation of the same pattern using modern C++

techniques such as variadic templates and fold expressions. By leveraging these techniques, we

can generate highly optimized code at compile time, avoiding virtual dispatch, associated with

runtime polymorphism. This approach results in a smaller memory footprint and faster code

that’s better suited to systems with limited resources.

Practical Patterns – Building a Temperature Publisher292

In this chapter, we’re going to cover the following main topics:

•	 The Observer pattern

•	 Runtime implementation

•	 Compile-time implementation

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Add an execution pane with GCC as your com-

piler for x86 architecture. This will allow you to see standard output and better observe the code’s

behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard, by

adding -std=c++23 in the compiler options box, and set the optimization level to -O3. Also, add

a compiler pane using ARM gcc 11.2.1 (none) to inspect the assembly output of the examples.

You can try the examples from this chapter in the Renode simulator in the Docker container you

set up in Chapter 4. Make sure that the Docker container is running.

You can find the files for this chapter on GitHub at https://github.com/PacktPublishing/Cpp-

in-Embedded-Systems/tree/main/Chapter15/observer.

The Observer pattern
The Observer pattern is often used in event-driven systems to publish events to subscribed

objects, usually by calling a method on them. An object that publishes events is called a subject

or publisher. Objects that receive events from a publisher are called observers or subscribers.

From now on, we will use the terms publisher and subscriber.

A publisher has an internal list of subscribers and provides an interface to register and unregister

a subscriber from the internal list. It also provides the notify method, used by its client, which

in turn calls update methods on subscribers – that’s why we say that the publisher notifies sub-

scribers.

An example of a publisher-subscriber mechanism that is common in embedded systems would be

a temperature publisher, which notifies the logger, display, and data sender at regular intervals.

Before we go on to the implementation of this example, we will first go through a UML diagram

of the Observer pattern.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter15/observer
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter15/observer

Chapter 15 293

Figure 15.1 – UML diagram of the Observer pattern

Figure 15.1 depicts the UML class diagram of the Observer pattern. In the diagram, we see that the

publisher class has the following members:

•	 etl::vector<subscribers_, 8>: Internal list of pointers to the subscriber interface, for

which we will use vector from ETL.

•	 register_sub(subscriber *): The method used to register a subscriber. The register

keyword is reserved in C++ and used as a storage specifier, so we are using register_sub

as the name for this method.

•	 unregister(subscriber *): The method used to unregister a subscriber.

•	 notify(float): The method used by the publisher’s client to trigger the updating of

subscribers.

Practical Patterns – Building a Temperature Publisher294

The subscriber interface class has one pure virtual method – void update(float). This method

is overridden in the concrete implementation of the subscriber class. To see this in action, we

will proceed with the runtime implementation of the Observer pattern.

Runtime implementation
We will go through the runtime implementation of the Observer pattern on the example of tem-

perature publisher. Subscribers will be a logger, display, and data sender. The code of the subscriber

interface and concrete subscribers is shown here:

#include <cstdio>

#include “etl/vector.h”

#include <algorithm>

class subscriber {

public:

 virtual void update(float) = 0;

 virtual ~subscriber() = default;

};

class display : public subscriber {

public:

 void update(float temp) override {

 printf(“Displaying temperature %.2f \r\n”, temp);

 }

};

class data_sender : public subscriber {

public:

 void update(float temp) override {

 printf(“Sending temperature %.2f \r\n”, temp);

 }

};

class logger : public subscriber {

public:

 void update(float temp) override {

 printf(“Logging temperature %.2f \r\n”, temp);

Chapter 15 295

 }

};

The preceding code defines the subscriber interface and concrete subscriber classes: display,

data_sender, and logger. Concrete classes override the pure virtual update method from the in-

terface class. For the sake of simplicity of the example, all concrete implementations are printing

temperature to standard output.

Using the interface class allows the publisher to depend on the interface. The publisher main-

tains an internal container of pointers to the subscriber interface. This makes it possible to add

different implementations of the subscriber interface through the pointer on the base interface

class. The code for the publisher class is provided here:

class publisher {

public:

 void register_sub(subscriber * sub) {

 if(std::find(subs_.begin(), subs_.end(), sub) == subs_.end())

 {

 subs_.push_back(sub);

 }

 }

 void unregister(subscriber * sub) {

 if(auto it = std::find(subs_.begin(), subs_.end(),

 sub); it != subs_.end())

 {

 subs_.erase(it);

 }

 }

 void notify(float value) {

 for(auto sub: subs_) {

 sub->update(value);

 }

 }

private:

 etl::vector<subscriber*, 8> subs_;

};

Practical Patterns – Building a Temperature Publisher296

In the preceding publisher class, we see the following members:

•	 etl::vector<subscriber*, 8> subs_: A private container used to maintain subscribers.

If you are running this example in Compiler Explorer, make sure to add the ETL library

using the Libraries option.

•	 void register_sub(subscriber * sub): A method used to register the subscriber. It

uses the std::find algorithm to check if a subscriber has already been added.

•	 void unregister(subscriber * sub): A method used to unregister a subscriber. It

uses the std::find algorithm to check if a subscriber is added before the calling method

erase to remove it from a vector. The method erase is provided by the iterator returned

by std::find if it is different from subs_.end().

•	 void notify(float value): Loops through registered subscribers and calls the method

update on them.

Now, let us see how to use the preceding publisher and subscribers in the following code:

int main() {

 logger temp_logger;

 display temp_display;

 data_sender temp_data_sender;

 publisher temp_publisher;

 temp_publisher.register_sub(&temp_logger);

 temp_publisher.register_sub(&temp_display);

 temp_publisher.notify(24.02f);

 temp_publisher.unregister(&temp_logger);

 temp_publisher.register_sub(&temp_data_sender);

 temp_publisher.notify(44.02f);

 return 0;

}

In the code, we perform the following steps:

1.	 Instantiate the following concrete subscribers: temp_logger, temp_display, and temp_

data_sender.

2.	 Instantiate the publisher temp_publisher.

3.	 Register the subscribers temp_logger and temp_display.

4.	 Call notify(24.02f) on temp_publisher.

Chapter 15 297

After these steps, we expect the following output:

Logging temperature 24.02

Displaying temperature 24.02

Next, we perform the following steps:

1.	 Unregister the subscriber temp_logger.

2.	 Register the subscriber temp_data_sender.

3.	 Call notify(44.02f) on temp_publisher.

After these steps, we expect the following output:

Displaying temperature 44.02

Sending temperature 44.02

As an exercise, create a new subscriber class eeprom_writer that records temperature if it goes

under or above a set threshold.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake –B build

$ cmake --build build --target run_in_renode

Next, we will go through the compile-time implementation of the Observer pattern.

Compile-time implementation
In most embedded applications, we know a lot about the system’s behavior at compile time. This

means that when using the Observer pattern, we already know all the subscribers. If we assume

that subscribers are only registered once and never unregistered, we can create a compile-time

version of the Observer pattern.

To enable this, we’ll first break down the key C++17 features that make compile-time implemen-

tation feasible.

Practical Patterns – Building a Temperature Publisher298

Leveraging variadic templates
We will base the implementation on variadic templates. We will start with a simplified imple-

mentation to explain variadic templates, parameter packs, and fold expressions – C++ features

that will allow us to create a compile-time version of the Observer pattern. Let us proceed with

the following code:

#include <cstdio>

struct display {

 static void update(float temp) {

 printf(“Displaying temperature %.2f \r\n”, temp);

 }

};

struct data_sender {

 static void update(float temp) {

 printf(“Sending temperature %.2f \r\n”, temp);

 }

};

struct logger {

 static void update(float temp) {

 printf(“Logging temperature %.2f \r\n”, temp);

 }

};

template <typename... Subs>

struct publisher {

 static void notify(float temp) {

 (Subs::update(temp), ...);

 }

};

int main() {

 using temp_publisher = publisher<display,

 data_sender,

Chapter 15 299

 logger>;

 temp_publisher::notify(23.47);

 return 0;

}

In the code above, we have subscribers structs display, data_sender, and logger. All structs

implement the static method update, which takes temperature as a parameter and prints it.

The struct publisher is a variadic class template. A variadic template is a template with at least

one parameter pack. A template parameter pack is a template parameter that accepts zero or

more template arguments. typename... Subs is a type template parameter pack named Subs,

meaning we can instantiate the struct publisher with zero or more different types. To sum it up:

•	 publisher is a variadic class template as it has a template parameter pack typename...

Subs.

•	 We can instantiate it with a variable number of types provided as template arguments.

This is the way to register subscribers to the publisher.

In the main function, we create the alias temp_publisher as publisher<display, data_sender,

logger>. We call the notify method on this alias, which will result in calls to update functions

in types provided through the template parameter pack, thanks to the fold expression in the

notify method.

The final piece of the puzzle is the fold expression (Subs::update(temp), ...). This is a fold expres-

sion that uses the comma operator as the folding operator. It expands to: (display::update(temp),

data_sender::update(temp), logger::update(temp)).

The fold expression ensures that display::update(temp) is called first, then data_

sender::update(temp), then logger::update(temp). The order of evaluation is strictly left to

right for the operands of the comma operator. Each update(temp) call returns a value (likely void).

The comma operator discards all return values except the last one, so only the final

logger::update(temp) determines the fold’s result. If they all return void, the whole expression

also returns void.

Fold expressions were introduced in C++17 and using the comma operator is a concise way to

call a function on each type in the parameter pack. Before that, a recursion was needed to iterate

through types and call a function on them.

Practical Patterns – Building a Temperature Publisher300

When examining the disassembly output in Compiler Explorer, you’ll notice that the generated

assembly code is relatively brief, approximately 30 lines in total, as shown here:

.LC0:

 .ascii “Displaying temperature %.2f \015\012\000”

.LC1:

 .ascii “Sending temperature %.2f \015\012\000”

.LC2:

 .ascii “Logging temperature %.2f \015\012\000”

main:

 push {r4, r5, r6, lr}

 mov r4, #-536870912

 ldr r5, .L3

 mov r2, r4

 mov r3, r5

 ldr r0, .L3+4

 bl printf

 mov r2, r4

 mov r3, r5

 ldr r0, .L3+8

 bl printf

 mov r2, r4

 mov r3, r5

 ldr r0, .L3+12

 bl printf

 mov r0, #0

 pop {r4, r5, r6, lr}

 bx lr

.L3:

 .word 1077377105

 .word .LC0

 .word .LC1

 .word .LC2

In this assembly code, we can see that there are no calls to the static update methods from the

display, data_sender, and logger structs. This means the compiler was able to optimize these

calls out, along with the registration of subscribers and the call to the publisher’s notify method,

resulting in direct calls to the printf function.

Chapter 15 301

The result is a small memory footprint and fast performance. This example demonstrates the

zero-cost abstraction design principle: we have abstractions for the publisher and subscribers,

yet there is zero overhead, as the compiler is able to optimize the code to be as efficient as if it

were written by hand.

Compare the assembly output of the compile-time implementation with that of the runtime

implementation using the same optimization level (-O3). It is clear that the compile-time imple-

mentation uses less memory and is faster as the compiler optimized away most of the function

calls, and there is no indirection caused by virtual functions.

As we analyze the assembly code, let’s take the opportunity to better understand fold expressions.

To prevent GCC from optimizing away calls to the update methods, we can use the __attribute__

((noinline)) function attribute, e.g. static void __attribute__((noinline)) update(float

temp). Add this attribute to the static update method of the display, data_sender, and logger

structs, and observe the generated assembly code. You’ll see how the call to the notify method in

the main function results in parameter pack expansion and generates calls to the update methods

of the display, data_sender, and logger structs.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build

-DMAIN_CPP_FILE_NAME=main_observer_ct_basic.cpp

$ cmake --build build --target run_in_renode

Simplified compile-time implementation of the Observer pattern has a couple of limits:

•	 Subscribers can only be registered.

•	 All subscribers are registered when the publisher is instantiated. They cannot be registered

after the publisher is instantiated.

Next, we will tackle the last point, as registering all subscribers in a single line of code may be cum-

bersome and not always practical. This will provide us with a more flexible compile-time design.

Practical Patterns – Building a Temperature Publisher302

Improving the compile-time implementation
We will not change the interface of the publisher template struct. Instead, we will allow it to

receive other publishers as arguments. The code is below:

template<typename T>

concept Updatable = requires (T, float f) {

 { T::update(f) } -> std::same_as<void>;

};

template<typename T>

concept Notifiable = requires (T, float f) {

 { T::notify(f) } -> std::same_as<void>;

};

template <typename... Subs>

struct publisher {

 static void notify(float temp) {

 (call_update_or_notify<Subs>(temp), ...);

 }

private:

 template<typename T>

 static void call_update_or_notify(float temp) {

 if constexpr (Updatable<T>) {

 T::update(temp);

 } else if constexpr (Notifiable<T>) {

 T::notify(temp);

 }

 else {

 static_assert(false, “Type is not Updatable or Notifiable”);

 }

 }

};

In the code above, we defined the following concepts:

•	 Updatable: This describes a type that has a static method update that accepts a float

•	 Notifiable: This describes a type that has a static method notify that accepts a float

Chapter 15 303

We covered concepts in more detail in Chapter 8. The variadic template class publisher has a new

method – call_update_or_notify. It is called on every type in the parameter pack typename...

Subs in the method notify using the fold expression and the comma operator.

In the method call_update_or_notify, we use if constexpr to check, at compile-time, if the

type is Updatable or Notifiable and call the update or notify static method on it respectively.

Below is an example of using the new version of the Observer pattern:

 using temp_publisher = publisher<display, data_sender>;

 temp_publisher::notify(23.47);

 using temp_publisher_new = publisher<temp_publisher, logger>;

 temp_publisher_new::notify(42.42);

In the code above, we instantiate temp_publisher by providing the variadic class template

publisher with types display and data_sender, which are both subscribers are Updatable.

Next, we instantiate temp_publisher_new by providing publisher with the previously instan-

tiated temp_publisher and the subscriber logger. Below is the output of the above example:

Displaying temperature 23.47

Sending temperature 23.47

Displaying temperature 42.42

Sending temperature 42.42

Logging temperature 42.42

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build -DMAIN_CPP_FILE_NAME=main_observer_ct.cpp

$ cmake --build build --target run_in_renode

This implementation of the Observer pattern allows us to register subscribers in a more flexible

manner. To make it more generic, as an exercise, you can modify it so that the notify method is

able to take a variable number of arguments.

Practical Patterns – Building a Temperature Publisher304

Summary
In this chapter, we went through the Observer pattern, both runtime and compile-time imple-

mentations.

Compile-time implementation is utilizing what we know about the application during com-

pile-time. It is based on variadic template classes and fold expressions. The result is super compact

and fast code, as we are not storing information about subscribers in a container, nor do we need

to iterate through the container to make a call to update methods.

In the next chapter, we will cover Finite State Machines (FSM) and the implementation of the

State patterns in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

16
Designing Scalable Finite State
Machines

A Finite State Machine (FSM) is an abstract computational module used to represent a system

that can be in exactly one of a finite number of states at any given time. An FSM can transition

from one state to another on a given input, and it can perform an action during the transition.

In control theory, there is a classification of Moore and Mealy machines. Moore’s FSM output

depends only on a state, that is, the FSM uses only entry actions. Mealy’s FSM output depends

on the input and current state, that is, the action it performs is determined by both the current

state and the input.

The FSMs that we will cover in this chapter are a combination of both Moore and Mealy FSMs as

they support both actions performed during transitions and entry and exit actions that depend

only on a current state. FSMs are also called Unified Modeling Language (UML) state machines

and are used in real-life applications in embedded systems to describe and control machines.

For example, FSMs are commonly used to control washing machines, elevator systems, or

communication protocols in networking devices, for managing complex sequences of

operations based on various inputs. Understanding FSMs will help you design more predictable

and maintainable embedded systems.

Designing Scalable Finite State Machines306

In this chapter, we’re going to cover the following main topics:

•	 FSM – a simple implementation

•	 FSM – implementation using the State pattern

•	 State pattern implementation using tag dispatching

•	 Boost SML (State Machine Language)

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86

architecture. This will allow you to see standard output (stdio) results and better observe the

code’s behavior. As we are using a lot of modern C++ features, make sure to select the C++23

standard, by adding -std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects

the output and generated assembly. Most of the examples can also be run in a Renode simulator on

an ARM Cortex M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter16).

FSM – a simple implementation
We will jump straight into an example of an FSM handling Bluetooth Low Energy (BLE) device

connection states, analyze its shortcomings, and see how we can improve it using the State de-

sign pattern.

The example FSM will be simplified for the purpose of clarity and easier understanding. We will

have three states – idle, advertising, and connected. Here is a state diagram of the example FSM:

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter16
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter16

Chapter 16 307

Figure 16.1 – BLE device connection state diagram

Figure 16.1 depicts the state diagram of the BLE device connection FSM. The diagram depicts tran-

sitions between states and actions described as follows:

•	 The default state is idle. It transitions to the advertising state on a ble_button_pressed

event. During the transition, the start_advertising action is executed. In simple words,

this means that if the device is in an idle state and a user presses a designated button, it

will start advertising and change state.

•	 From the advertising state, the FSM can transition to connected on a connection_request

event or go back to idle on the timer_expired state while stopping the advertising by

executing the stop_advertising action.

•	 When in the connected state, the FSM can go only to idle on the ble_button_pressed

event while executing the disconnect action.

Designing Scalable Finite State Machines308

Keep in mind that this is an extremely simplified FSM we are using for the purpose of an example,

and a real-life FSM would include more states and events to properly describe the connecting

behavior of a BLE device.

An FSM can also be described using state transition tables. This table shows the state to which

the FSM moves based on the current state and input (received event), as well as the action it per-

forms during the transition. Here is the transition table for the BLE device FSM we are analyzing

in this chapter:

Current State Event Next State Action

idle ble_button_pressed advertising start_advertising

advertising timer_expired idle stop_advertising

advertising connection_request connected

connected ble_button_pressed idle disconnect

Table 16.1 – BLE device state transition table

Table 16.1 describes the BLE device FSM by listing transitions in rows. It serves as an alternative

to the state diagram for describing FSM behavior. We will start with the implementation of this

FSM first by defining states and events.

Describing states and events
We will model states and events as enumerators, as shown in the following code:

enum class ble_state {

 idle,

 advertising,

 connected

};

enum class ble_event {

 ble_button_pressed,

 connection_request,

 timer_expired

};

The preceding enumerators describe states and events for our BLE device FSM.

Chapter 16 309

Tracking current state and handling events – the FSM class
Next, we will define a class ble_fsm that will keep track of the current state and provide a public

method, handle_event, which we will use to feed the FSM with events. The code is as follows:

class ble_fsm {

public:

 void handle_event(ble_event event);

 ble_state get_state() const {

 return current_state_;

 }

private:

 ble_state current_state_ = ble_state::idle;

 void start_advertising() {

 printf("Action: start_advertising()\n");

 }

 void stop_advertising() {

 printf("Action: stop_advertising()\n");

 }

 void disconnect() {

 printf("Action: disconnect()\n");

 }

};

In the code above, we define the class ble_fsm with the following members:

•	 ble_state current_state_ – A private member with the default value ble_state::idle.

We use it to track the current state, and the initial value is set to idle.

•	 void start_advertising() – A private method used to implement an action.

•	 void stop_advertising() – A private method used to implement an action.

•	 void disconnect() – A private method used to implement an action.

•	 ble_state get_state() const – A private method used to retrieve the current state.

•	 void handle_event(ble_event event) – A public method used to respond to events

by executing actions and changing the current state depending on the current_event_.

Designing Scalable Finite State Machines310

The handle_event method implements the actual behavior of the FSM, and the code for it is

shown here:

void ble_fsm::handle_event(ble_event event) {

switch (current_state_) {

 case ble_state::idle:

 if (event == ble_event::ble_button_pressed)

 {

 start_advertising();

 current_state_ = ble_state::advertising;

 }

 break;

 case ble_state::advertising:

 if (event == ble_event::connection_request)

 {

 current_state_ = ble_state::connected;

 }

 else if (event == ble_event::timer_expired)

 {

 stop_advertising();

 current_state_ = ble_state::idle;

 }

 break;

 case ble_state::connected:

 if (event ==ble_event::ble_button_pressed)

 {

 disconnect();

 current_state_ = ble_state::idle;

 }

 break;

 default:

 break;

}

}

Chapter 16 311

The preceding code shows the implementation of the handle_event method for the ble_fsm

class. It uses a switch statement on current_state_ to handle the event according to it and

receive the event. The event is handled by calling an appropriate action and changing the state

as described by the FSM.

Next, we will see how to use the ble_fsm class.

Using the ble_fsm class
We will first define a helper function, state_to_string, used to debug our FSM. The code is shown

here:

static const char* state_to_string(ble_state state) {

 switch (state) {

 case ble_state::idle: return "idle";

 case ble_state::advertising: return "advertising";

 case ble_state::connected: return "connected";

 default: return "unknown";

 }

}

The state_to_string function returns a string literal for a given state enum.

Next, let us see how to use the ble_fsm class, as shown in the following code:

int main() {

 ble_fsm my_ble_fsm;

 const auto print_current_state = [&]() {

 printf("Current State: %s\n",

 state_to_string(my_ble_fsm.get_state()));

 };

 print_current_state();

 my_ble_fsm.handle_event(ble_event::ble_button_pressed);

 print_current_state();

 my_ble_fsm.handle_event(ble_event::connection_request);

 print_current_state();

Designing Scalable Finite State Machines312

 my_ble_fsm.handle_event(ble_event::ble_button_pressed);

 print_current_state();

 return 0;

}

The preceding code in the main function creates an object, my_ble_fsm, of the ble_fsm type, and

it feeds it with events in the following order:

1.	 It first passes ble_event::ble_button_pressed to the FSM handle_event method. The

initial state of the FSM is idle, and after this event, it will transition to advertising.

2.	 Next, it passes the ble_event::connection_request event to the FSM, which will make

it transition to the connected state.

3.	 Finally, it passes the ble_event::ble_button_pressed event to the FSM for the second

time, making it transition back to the idle state.

The code above uses the state_to_string function to get the string literal from the state enum,

and it uses it to print the current state of the FSM after it feeds it with an event.

Analyzing the output
Running the full example will provide the following output:

Current State: idle

Action: start_advertising()

Current State: advertising

Current State: connected

Action: disconnect()

Current State: idle

The preceding output shows FSM states and the executed actions.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build

$ cmake --build build --target run_in_renode

Chapter 16 313

The approach for implementing an FSM we just went through works well for simple FSMs. In

real-life applications, FSMs are more complex – they have more states, actions, and events. The

handle_event method in ble_fsm doesn’t scale well as it is implemented using switch-case and

if-else logic. Adding more states, and handling more events and actions, makes it less readable

and harder to maintain.

Next, we will see how we can utilize the State design pattern to mitigate these issues.

FSM – implementation using the State pattern
Building on our switch-based approach, we will now refactor the BLE device connection FSM using

the State design pattern. This pattern is “state-centric,” meaning each state is encapsulated as its

own class. A common base class interface will allow the FSM to store pointers to these concrete

state classes in a container.

In a typical FSM, states change dynamically at runtime in response to external interrupts and timers.

In our example, we will continue using an enum to differentiate states and store the current one

in a private member variable. This enum-based approach still works well with the State pattern,

since it lets us quickly locate and switch between the concrete state objects that the FSM manages.

We will start the implementation with the state class interface.

Understanding state class interfaces
The state class interface is shown in the following code:

class state {

public:

 virtual ble_state handle_event(ble_event event) = 0;

 virtual ble_state get_state_enum() = 0;

};

In the preceding code, we see that the state interface is simple and has two pure virtual methods:

•	 virtual ble_state handle_event(ble_event event) – A method intended to be

implemented by a derived class to handle an actual event. It returns a ble_state enum

to signal a new state to an FSM. If handling an event doesn’t cause transition, it should

return the enum that corresponds to the current state.

•	 virtual ble_state get_state_enum() – A method used to return a ble_state enum

corresponding to an actual state.

Designing Scalable Finite State Machines314

Next, we will go over the implementation of concrete state classes: idle, advertising, and

connected. We will start with the idle class, as shown in this code:

class idle : public state{

public:

 ble_state handle_event(ble_event event) {

 if (event == ble_event::ble_button_pressed) {

 start_advertising();

 return ble_state::advertising;

 }

 return get_state_enum();

 }

 ble_state get_state_enum() {

 return ble_state::idle;

 }

private:

 void start_advertising() {

 printf("Action: start_advertising()\n");

 }

};

In the preceding code, we see that the idle class implements pure virtual methods defined in

the state interface class:

•	 ble_state handle_event(ble_event event) – The idle class checks whether the re-

ceived event is ble_event::ble_button_pressed and calls start_advertising if it is and

returns the ble_state::advertising enum. In the case that it receives any other event, it

returns the state provided with get_state_enum.

•	 ble_state get_state_enum() – This returns the ble_state enum corresponding to the

idle class, which is ble_state::idle.

Next, we will go through the derived class advertising, as shown in the following code:

class advertising : public state{

public:

 ble_state handle_event(ble_event event) {

 if (event == ble_event::connection_request) {

 return ble_state::connected;

 }

Chapter 16 315

 if (event == ble_event::timer_expired) {

 stop_advertising();

 return ble_state::idle;

 }

 return get_state_enum();

 }

 ble_state get_state_enum() {

 return ble_state::advertising;

 }

private:

 void stop_advertising() {

 printf("Action: stop_advertising()\n");

 }

};

In this code, the advertising class implements pure virtual methods defined in the state inter-

face class by handling the events appropriately.

Next, we will go over the connected concrete class:

class connected : public state{

public:

 ble_state handle_event(ble_event event) {

 if (event == ble_event::ble_button_pressed) {

 disconnect();

 return ble_state::idle;

 }

 return get_state_enum();

 }

 ble_state get_state_enum() {

 return ble_state::connected;

 }

private:

 void disconnect() {

 printf("Action: disconnect()\n");

 }

};

Designing Scalable Finite State Machines316

As we can see in the preceding code, the connected class implements a state interface and

implements the virtual methods handle_event and get_state_enum appropriately.

Next, we will refactor the ble_fsm class to use the state class interface to store pointers to concrete

class objects in a container.

Refactoring the ble_fsm class
We will start with refactoring the ble_fsm class, as shown in the following code:

class ble_fsm {

public:

 void handle_event(ble_event event) {

 if(auto the_state = get_the_state(current_state_)) {

 current_state_ = the_state->handle_event(event);

 }

 }

 ble_state get_state() const {

 return current_state_;

 }

 void add_state(state *the_state) {

 states_.push_back(the_state);

 }

private:

 ble_state current_state_ = ble_state::idle;

 etl::vector<state*, 3> states_;

 state* get_the_state(ble_state state_enum); };

Let us break down the implementation of the ble_fsm class:

•	 ble_state current_state_ – A private member with the default value ble_state::idle.

We use it to track the current state, as we did previously.

•	 etl::vector<state*, 3> states_ – A container used to hold pointers to the state inter-

face. If you are following this example using Compiler Explorer, you can replace it with

std::vector (and include a <vector> header).

Chapter 16 317

•	 state* get_the_state(ble_state state_enum) – A private method used to get an actual

state using the ble_state enum.

•	 void handle_event(ble_event event) – A public method used to handle events. It calls

the get_the_state method provided with current_state_ to get a pointer to the actual

state object. If the pointer is valid, it calls handle_event on the state object and stores the

return value in current_state_.

Next, let us go through the get_the_state method implementation, as shown here:

state* ble_fsm::get_the_state(ble_state state_enum) {

const auto is_state_enum = [&](state* the_state) {

 return the_state->get_state_enum() == state_enum;

};

auto it = std::find_if(states_.begin(), states_.end(), is_state_enum);

if (it != states_.end()) {

 return *it;

}

return nullptr;

}

In the get_the_state method, we use the std::find_if function (from the <algorithm> header)

to search for a pointer to a state object that matches the given state_enum. The search uses the

is_state_enum lambda as a predicate, which compares each state’s enum value. If a matching

state is found, the method returns a pointer to it; otherwise, the nullptr.

Next, let us see how to use the refactored ble_fsm class, the state interface, and the concrete

classes idle, advertising, and connected to implement the FSM.

Implementing the State pattern
Next, we will see how to use the above implementation of the State pattern in the following code:

int main() {

 ble_fsm my_ble_fsm;

 idle idle_s;

 advertising advertising_s;

Designing Scalable Finite State Machines318

 connected connected_s;

 my_ble_fsm.add_state(&idle_s);

 my_ble_fsm.add_state(&advertising_s);

 my_ble_fsm.add_state(&connected_s);

 const auto print_current_state = [&]() {

 printf("Current State: %s\n",

 state_to_string(my_ble_fsm.get_state()));

 };

 print_current_state();

 my_ble_fsm.handle_event(ble_event::ble_button_pressed);

 print_current_state();

 my_ble_fsm.handle_event(ble_event::connection_request);

 print_current_state();

 my_ble_fsm.handle_event(ble_event::ble_button_pressed);

 print_current_state();

 return 0;

}

In this code, we see that after creating an object my_ble_fsm of the ble_fsm type, we create instanc-

es of concrete states: idle, advertising, and connected. Then, we add pointers to the concrete

states to the my_ble_fsm object using the add_state method. Next, we use the FSM as we did in

the initial implementation and feed it with events.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build -DMAIN_CPP_FILE_NAME=main_fsm_state_pattern.cpp

$ cmake --build build --target run_in_renode

The example we just went through is using the State design pattern. Next, we will go through the

generic form of the State design pattern.

Chapter 16 319

State design pattern
Let us go over the UML diagram of the BLE device connection FSM, as shown in Figure 16.2:

Figure 16.2 – BLE device connection FSM – UML diagram

Figure 16.2 depicts a UML diagram of the BLE device connection FSM. We already went through

applying the State design pattern to the FSM implementation. Let us summarize it:

•	 The FSM class holds pointers to the state class interface in a container.

•	 The FSM keeps track of the current state.

•	 The FSM delegates handle_event calls to a current concrete state.

•	 Concrete states implement the state interface.

•	 Concrete states implement actions and call them appropriately when handling events.

•	 Concrete states return a new state from the handle_event method. This allows the FSM

to update the current state.

The state design pattern is a simple yet effective pattern that allows us to break down complex

switch statements into more manageable code. Still, as we were able to see in the previous example,

concrete states handle events using if-else logic. With the increasing complexity of an FSM, the

handle functions can also clutter. To mitigate this, we can apply the tag-dispatching technique.

Designing Scalable Finite State Machines320

State pattern implementation using tag dispatching
In the previous example (in the previous sections), the program flow in event handlers was de-

termined at runtime using if-else logic. Next, we will use the tag-dispatching technique to

decouple event handling of different events in separate methods. We will rely no longer on the

ble_event enum, and will create empty types as events instead, as shown in the following code:

struct ble_button_pressed{};

struct connection_request{};

struct timer_expired{};

Now, the class state will overload handle_event virtual methods for every defined event, as

shown here:

class state {

public:

 virtual ble_state handle_event(ble_button_pressed) {

 return get_state_enum();

 }

 virtual ble_state handle_event(connection_request) {

 return get_state_enum();

 }

 virtual ble_state handle_event(timer_expired) {

 return get_state_enum();

 }

 virtual ble_state get_state_enum() = 0;

};

In this code, we see that the class state is no longer an interface but an abstract class (as not all

virtual methods are pure). It overloads the handle_event function for types ble_button_pressed,

connection_request, and timer_expired. It implements all overloads by returning the value

generated by get_state_enum – a pure virtual method that will be implemented by derived classes,

that is, concrete states.

Next, let us see the implementation of the advertising class:

class advertising : public state{

public:

 ble_state handle_event(connection_request cr){

 return ble_state::connected;

Chapter 16 321

 }

 ble_state handle_event(timer_expired te){

 stop_advertising();

 return ble_state::idle;

 }

 ble_state get_state_enum() {

 return ble_state::advertising;

 }

private:

 void stop_advertising() {

 printf("Action: stop_advertising()\n");

 }

};

In this code, we see that the advertising class implements the following overloads of the virtual

method handle_event:

•	 ble_state handle_event(connection_request cr) returns ble_state::connected.

•	 ble_state handle_event(timer_expired te) calls stop_advertising and returns

ble_state::idle.

By using overloaded functions, we can implement the handling of different events in separate

methods and easily dispatch calls to them by calling handle_event with different types. To com-

plete the implementation, we also need to overload the handle_event method in the FSM for all

possible events. We can do this easily by making it a template method, as shown in the following

code:

class ble_fsm {

public:

 template<typename E>

 void handle_event(E event) {

 if(auto the_state = get_the_state(current_state_))

 {

 current_state_= the_state->handle_event(event);

 }

 }

//...

};

Designing Scalable Finite State Machines322

The preceding code shows the template method handle_event from the ble_fsm class, which

makes our tag-dispatching technique application complete.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build

-DMAIN_CPP_FILE_NAME=main_fsm_state_pattern_tag_dispatch.cpp

$ cmake --build build --target run_in_renode

Until this point, we saw three approaches in this chapter to implement an FSM in C++. We start-

ed with a simple switch and if-else-based approach, applied the State design pattern, and then

utilized tag dispatching. Each step provided us with more flexibility in the design – making code

more readable and easier to manage, which is important when working with complex FSMs.

There are other approaches to implementing an FSM, based on a state transition table, which

describes transitions in a single place. Boost State Machine Language (SML) uses a table-based

approach to describe an FSM using descriptive syntax.

Boost SML
Boost SML is a highly expressive C++14 single header library used to implement FSMs. We will jump

straight ahead in using it by implementing the same BLE device connection FSM. Here is the code:

#include "sml.hpp"

namespace sml = boost::sml;

struct ble_button_pressed{};

struct connection_request{};

struct timer_expired{};

constexpr auto start_advertising = [](){

 printf("Action: start_advertising()\n");

};

constexpr auto stop_advertising = [](){

 printf("Action: stop_advertising()\n");

};

constexpr auto disconnect = [](){

Chapter 16 323

 printf("Action: disconnect()\n");

};

struct ble_fsm {

 auto operator()() const {

 using namespace sml;

 return make_transition_table(

 *"idle"_s + event<ble_button_pressed>

 / start_advertising = "advertising"_s,

 "advertising"_s + event<connection_request> = "connected"_s,

 "advertising"_s + event<timer_expired>

 / stop_advertising = "idle"_s,

 "connected"_s + event<ble_button_pressed>

 / disconnect = "idle"_s

);

 }

};

Let us break down this example:

•	 The events are modeled as structs, the same as in our tag-dispatching implementation.

•	 Actions are defined as constexpr lambdas.

•	 We define the type ble_fsm as a struct with an overloaded operator(), which returns the

result of a call to make_transition_table from the namespace sml.

The code in make_transition_table allows SML to extract transition definitions, and within

it, we are using the following syntax: src_state + event [guard] / action = dst_state.

Here is a breakdown of the syntax:

•	 src_state – This is the state from which the transition starts.

•	 + event – This is the event that triggers checking for a possible transition. If the event

arrives and the guard is satisfied, then the transition proceeds.

•	 [guard] – The guard is an optional bool predicate that must evaluate to true for the

transition to occur. If omitted, the transition happens unconditionally at the specified

event.

•	 / action – The action is an optional lambda to execute whenever the transition takes place.

•	 = dst_state – The destination state is where the FSM will go if the transition occurs.

Designing Scalable Finite State Machines324

The transition syntax is the essence of SML. By writing multiple lines of these rules inside the

operator(), we fully describe the FSM's behavior in a declarative, human-readable way.

Let us now see how to use the FSM we discussed using Boost SML:

 sm<ble_fsm> my_ble_fsm{};

 const auto print_current_state = [&]() {

 printf("Current State: ");

 if(my_ble_fsm.is("idle"_s)) {

 printf("idle\n");

 }

 if(my_ble_fsm.is("advertising"_s)) {

 printf("advertising\n");

 }

 if(my_ble_fsm.is("connected"_s)) {

 printf("connected\n");

 }

 };

 print_current_state();

 my_ble_fsm.process_event(ble_button_pressed{});

 print_current_state();

 my_ble_fsm.process_event(connection_request{});

 print_current_state();

 my_ble_fsm.process_event(ble_button_pressed{});

 print_current_state();

In this code, we create an object my_ble_fsm of the type sm<ble_fsm>. Then, we use the process_

event method to send an event to it. You can run the full example in the Renode simulator from

the book’s GitHub repo. It is placed under Chapter16/fsm, and you can build and run it using

the following commands:

$ cmake –B build -DMAIN_CPP_FILE_NAME=main_fsm_boost_sml.cpp

$ cmake --build build --target run_in_renode

Chapter 16 325

Boost SML is a highly expressive library that reduces boilerplate code from the previous imple-

mentations of an FSM. It also offers features such as guard variables and composite states. Here

is a project link where you can explore more: https://github.com/boost-ext/sml.

Boost SML is not only an expressive library but also highly performant, thanks to its use of com-

pile-time template metaprogramming to aggressively optimize code. Event dispatching relies

on tag dispatching (resolved at compile time) paired with minimal runtime lookups, avoiding

costly branching or indirection. This approach typically outperforms both manual switch-enum-

based solutions and State pattern-based implementations (which incur virtual call overhead). For

concrete performance comparisons, see the benchmark at the following link: https://github.

com/boost-ext/sml?tab=readme-ov-file#benchmark.

Summary
In this chapter, we went through FSM implementation starting from the simple switch-case-

based approach, to the State pattern, tag dispatching, and using the Boost SML library for highly

expressive code.

The most basic, switch-based implementation is suitable for small FSMs with a limited number of

states and transitions. When the complexity of an FSM increases, it gets hard to read and manage.

Moving to a State pattern-based solution increases code readability and makes changes easier.

Boost SML offers ultimate expressiveness, providing us with a human-readable syntax that allows

us to write very complex FSMs in a concise manner.

In the next chapter, we will go through an overview of libraries and frameworks in C++ usable

for embedded systems development.

https://github.com/boost-ext/sml
https://github.com/boost-ext/sml?tab=readme-ov-file#benchmark
https://github.com/boost-ext/sml?tab=readme-ov-file#benchmark

17
Libraries and Frameworks

While the C++ standard library offers a vast array of containers and algorithms, certain aspects

– such as dynamic memory allocation – can pose challenges in constrained environments. In

Chapter 2, we explored some of these issues and ways to address them. However, specialized

libraries, like the Embedded Template Library (ETL), offer deterministic behavior and fixed

memory footprints, making them well suited for embedded systems.

Embedded applications depend on Hardware Abstraction Layers (HALs) provided by vendors

as C libraries. In Chapter 12, we examined how to use interfaces to decouple application-level C++

code from the underlying C-based hardware interactions. Wrapping entire HALs in C++ is a lot of

work, but luckily, there are projects such as Google’s Pigweed that are tackling exactly that, while

offering additional functionality and flexibility for embedded development.

In Chapter 11, we explored how C++ can perform computations at compile time, reducing memory

footprint. In Chapter 15, we learned about the Observer pattern and examined its compile-time

implementation. Intel’s Compile-time Initialization and Build (CIB) elevates these ideas even

further, enabling a declarative approach to configuring firmware applications at compile time.

In this chapter, we will go through the following C++ libraries:

•	 Standard library

•	 Embedded template library

•	 Pigweed

•	 Compile-time Initialization and Build

Libraries and Frameworks328

Technical requirements
You can try the examples from this chapter in the Renode simulator in the Docker container you

set up in Chapter 4. Make sure that the Docker container is running.

You can find the files for this chapter on GitHub at https://github.com/PacktPublishing/Cpp-

in-Embedded-Systems/tree/main/Chapter17.

Standard library
The C++ standard defines two types of standard library implementation – hosted and freestanding:

•	 A freestanding implementation is designed to run without relying on services typically

provided by an OS, such as filesystem access or multi-threading support. As a result, the

C++ standard specifies only a limited subset of standard library headers that must be

provided by a freestanding implementation.

•	 A hosted implementation requires a globally defined main function, and the environment

is responsible for invoking this function at startup. In a freestanding implementation,

the startup routines and the entry point of the program are implementation-defined,

allowing developers greater flexibility in specifying the initialization and execution flow

of their applications.

Although the standard makes a clear distinction between hosted and freestanding implementa-

tion in terms of the globally defined main function, the configuration in some examples in this

book blurs the line between the two.

Freestanding and hosted implementations in GCC
Even though we operate in a freestanding environment (no OS), some examples in this book use

components from the C++ standard library (e.g., std::function), which are typically associated

with hosted implementations. This is possible because:

•	 As we observed in Chapter 4, we set the program entry point in the linker script to Reset_

Handler.

•	 Reset_Handler, implemented in the assembler startup script, performs low-level initial-

ization and explicitly calls main.

•	 We use nano specs (Chapter 7), linking against a size-optimized subset of the C++ stan-

dard library. This allows limited use of hosted features like std::function while avoiding

dependencies on an OS.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17

Chapter 17 329

This hybrid approach leverages GCC’s flexibility to combine freestanding execution (custom

entry point, no OS) with hosted library features (standard headers, utilities) in a bare-metal

environment.

To explicitly request GCC to use a freestanding implementation of the standard library, the com-

piler flag -ffreestanding should be used. The C++ standard library provides many components

that are “pay only for what you use” and can be very useful even in resource‐constrained envi-

ronments. In previous chapters, you’ve already worked with many parts of the standard library,

so you have a solid understanding of its capabilities. Here, we’ll provide an overview of the parts

that are best suited for resource‐constrained environments and point out which ones should be

used with caution or avoided.

Numeric and math
Embedded systems are often employed in automation and process control, requiring precise con-

trol over numeric types, their ranges, and math operations. The C++ standard library provides the

<cstdint>, <limits>, and <cmath> headers to define fixed-width integers, query numeric limits,

and perform mathematical computations, helping ensure predictable behavior, portability, and

efficiency in resource-constrained environments.

<cstdint>
The <cstdint> header provides fixed-width integer types such as std::int8_t, std::uint32_t,

and other well-known C types defined in stdint.h. These types are useful in embedded contexts

where integer size and bit width are important for direct hardware register access, predictable

overflow behavior, and memory usage considerations. By using them, you explicitly document

your intention for a variable’s size, thereby improving code portability and preventing potential

surprises when moving between platforms with different native integer widths.

<limits>
The header provides the std::numeric_limits template, which describes properties of funda-

mental numeric types (like minimum and maximum values, sign, and precision). This is especially

useful in embedded contexts for handling overflow. Typical usage occurs at compile-time or

through trivial inlining by the compiler, resulting in minimal runtime overhead. By using functions

like std::numeric_limits::max(), you avoid scattering magic constants or architecture-specific

assumptions, aiding portability and maintainability.

Libraries and Frameworks330

<cmath>
The <cmath> header provides standard math functions such as std::sin, std::cos, std::sqrt,

and more. In embedded environments, especially those without floating-point hardware,

these functions can be relatively expensive in terms of both runtime performance and code

size. Carefully consider whether you really need floating-point math, and if so, whether

approximations or fixed-point routines might be sufficient and more efficient.

Containers and algorithms
Embedded systems often manage structured data and require efficient ways to process it under

tight resource constraints. The C++ standard library offers container and algorithm headers such

as <array>, , and <algorithm> to organize data and perform common operations like

searching, sorting, and transforming, enabling more readable and maintainable code.

std::array
The only fixed-size container in the standard library that avoids dynamic allocation is std::array.

We covered it in Chapter 1, when we discussed generic types. In the same chapter, we based the

ring buffer implementation on std::array, which allowed us to create ring buffers of different

types and sizes using the same generic code.

std::array is typically implemented as a wrapper around a C-style array. Besides being a generic

type, it also offers the at method for index-based access with runtime bounds checking, making it

a safer alternative to raw arrays. If an out-of-bounds index is requested, the at method will throw

an exception. If exceptions are disabled, it may call std::terminate or std::abort, depending

on the library implementation. These behaviors should be handled according to your system

requirements by implementing appropriate terminate and signal handlers.

std:: priority_queue
std::priority_queue is a container adapter that provides priority queue functionality. By

default, it uses std::vector as the underlying container. However, as shown in Chapter 14, you

can substitute it with etl::vector from ETL, avoiding issues with dynamic memory allocation.

std:: span
As shown in Chapter 9, std::span is a lightweight, non-owning wrapper around a contiguous

sequence of objects, where the first element is at position 0. It provides essential functionality

such as the size() method, operator[] for element access, and the begin() and end() iterators,

allowing it to integrate seamlessly with standard library algorithms.

Chapter 17 331

std::span can be constructed from C-style arrays as well as containers like std::array and

std::vector or etl::vector. This makes it a practical alternative to using separate pointer and

size parameters, which is especially useful when interfacing C++ code with C libraries such as

those used in HAL.

Iterators
Iterators are abstractions that act like generalized pointers, providing a uniform way to traverse

and access elements within a container. For example, standard library containers implement the

begin() and end() methods, which return iterators marking the start and one-past-the-end of

their sequence. This consistent interface allows algorithms to work generically over different

container types, enhancing code reusability and clarity.

Let us go through the following example using std::array:

#include <array>

#include <algorithm>

#include <cstdio>

int main() {

 std::array<int, 5> arr = {5, 3, 4, 1, 2};

 std::array<int, 5>::iterator start = arr.begin();

 auto finish = arr.end();

 std::sort(start, finish);

 for (auto it = arr.begin(); it != arr.end(); ++it) {

 printf("%d ", *it);

 }

 printf("\n");

 return 0;

}

This example demonstrates how to use iterators with a standard library container:

•	 The iterator start is explicitly declared as std::array<int, 5>::iterator to

illustrate the full type name, while the iterator finish is declared using auto for

conciseness, allowing the compiler to deduce its type.

•	 The std::sort algorithm is applied using the iterators start and finish, obtained from

arr.begin() and arr.end(), to sort the array in ascending order.

•	 The loop uses auto to declare the iterator it, which makes the code more concise. The

loop traverses the sorted array, and printf is used to print each element.

Libraries and Frameworks332

Iterators are used to traverse containers. They not only promote generic programming but also

make it easy to switch container types without changing the algorithmic logic.

Algorithms
Algorithms from the standard library offer a consistent way to solve common problems across

different containers, making the code more expressive and easier to maintain. They allow you

to perform operations like searching, sorting, copying, and accumulating data using a uniform

interface. Some of the most used algorithms are listed here:

•	 std::sort: Sorts a range of elements in ascending order by default, using the less-than

operator for comparison. It can also accept a custom comparator to sort based on different

criteria, such as descending order or a specific object property.

•	 std::find: Searches for the first occurrence of a given value in a range and returns an

iterator to it. If the value is not found, it returns the end iterator, signaling that the

search failed.

•	 std::for_each: Applies a specified function or lambda to each element in a range.

•	 std::copy: Copies the elements of one range into another destination range.

•	 std::copy_if: Copies only elements that satisfy a specified predicate, making it useful

for filtering data as you copy.

•	 std::min and std::max: Return the smaller or larger of two values, respectively, using

the less-than operator by default (or a provided comparison function). They’re handy for

quick comparisons where you just need the minimum or maximum of two values.

•	 std::min_element and std::max_element: Return an iterator to the smallest or largest

element in a range. These are useful when you need to find the position of an extreme

value in a container (instead of comparing just two values).

•	 std::accumulate: Iterates over a range and combines the elements with an initial value

using a binary operation (default is addition). This allows for summing values, computing

products, or performing any custom aggregation you define.

Template metaprogramming
As discussed in Chapter 8, C++ type traits are compile-time predicates and transformations that

allow the compiler to enforce constraints based on a type’s properties. They are used for writing

generic, robust code without incurring runtime overhead. In Chapter 12, we used type traits to

create type-safe register access, preventing invalid type usage at compile time and reducing the

risk of subtle errors.

Chapter 17 333

Here are some concrete type traits we’ve utilized in the chapters mentioned in this section:

•	 std::enable_if: Enables or disables function templates based on a Boolean compile-time

expression

•	 std::is_same: Checks if two types are exactly the same

•	 std::is_enum: Checks if a type is an enumeration type

•	 std::underlying_type: Retrieves the underlying integer type of an enum

•	 std::is_arithmetic: Checks if a type is an arithmetic type (integral or floating-point)

•	 std::is_integral: Checks if a type is an integral type

•	 std::is_floating_point: Checks if a type is a floating-point type

Parts of the standard library to avoid in embedded
applications
Many containers from the standard library, such as std::vector, std::list, and std::string,

use dynamic memory allocation. If dynamic memory allocation is not allowed in your embedded

application, these should be avoided.

The iostream library, included with header <iostream>, requires significant memory resources

and also relies on dynamic allocation. That’s why we used the <cstdio> header and the printf

function for console output.

In Chapter 10, we covered std::function from the <functional> header. There, we outlined that

in some scenarios, std::function can use dynamic memory allocation, meaning if used, it should

be used with caution. Note that std::function is not available in a freestanding implementation.

Next, we will give a short overview of ETL that compliments the standard library in the context

of restricted embedded environments.

Embedded template library
In Chapter 2, we saw that std::vector uses dynamic memory allocation by default. We also saw

that we can use std:: polymorphic_allocator and a monotonic buffer to make it use statically

allocated memory. This approach is still not bulletproof as std::vector in some cases can resort

to dynamic memory allocation even with this approach.

To address some of the challenges posed by the standard library in embedded contexts, ETL pro-

vides a set of templated containers and algorithms that closely mimic the interfaces of standard

library counterparts but are tailored for systems with limited resources.

Libraries and Frameworks334

Fixed-size containers
One of the primary advantages of ETL is that its containers (such as etl::vector, etl::list,

etl::string, and others) allow you to specify a fixed maximum size at compile time. Container

implementations ensure that no dynamic memory allocation is performed at runtime as memory

is reserved up front as atomic or static storage.

As ETL containers are designed to mimic standard library containers, and they implement iterators,

they can be used with most algorithms and container adapters from the standard library. This

allows us to leverage components from the standard library without worrying about dynamic

allocation.

ETL also offers etl::array for platforms that do not support C++11, since std::array was

introduced in C++11.

Storing a callable with etl::delegate
As shown in Chapter 14, you can use etl::delegate instead of std::function to store a

callable. However, etl::delegate is non-owning, so you must handle potential dangling

references carefully.

Other utilities provided by ETL
Besides fixed-size containers and etl::delegate, ETL also provides utilities such as a messaging

framework – a collection of messages, message routers, message buses, and finite state machines.

It also offers CRC calculations, checksums, and hash functions.

ETL allows you to configure error handling. It can be configured to throw exceptions or send

errors to the user-defined handler. This allows greater flexibility and project-based configuration

depending on system requirements.

You can learn more about ETL at the website https://www.etlcpp.com/.

Next, we will discuss Pigweed – a collection of lightweight, modular C++ libraries for embed-

ded systems, developed by Google, offering components like logging, assertions, and Bluetooth

connectivity to simplify development and improve code reuse.

https://www.etlcpp.com/

Chapter 17 335

Pigweed
One of the biggest challenges in embedded systems development is portability. For code to be truly

portable, it must depend on interfaces. To run it on different hardware targets, someone needs to

implement those interfaces on different targets. Maintaining consistent interfaces across various

projects and devices can be difficult. Google’s Pigweed project aims to solve this by providing

software modules for embedded applications, with hardware interfaces already implemented

for many targets.

Pigweed is intended for complex projects and large-scale teams. Besides the hardware interfaces,

it also:

•	 Packs software modules built on top of them, such as logging, serial communication (SPI,

I2C, and UART), Bluetooth Host Controller Interface (HCI), interactive console, Remote

Procedure Call (RPC) system, and more.

•	 Provides embedding-friendly alternatives to standard library components: fixed-size

strings and containers.

•	 Manages the entire toolchain out of the box and simplifies setting up your development

environment.

•	 Provides an entire framework – pw_system – which pulls together many modules across

Pigweed to construct a working system with RPC, logging, and more.

As you can see, Pigweed is not only a library – it is an entire development ecosystem. It can be

used as a framework, but you can also cherry-pick individual modules that suit your needs. As

stated on the documentation website – https://pigweed.dev/ – Pigweed is still in its early stages;

some modules are still in development stages, while some are stable and used on devices that are

already on the market. As with any library, you need to evaluate it for potential use in your projects.

We’ll go through Pigweed’s Sense tutorial to demonstrate some of its capabilities – mainly the

interactive console and RPC system.

Pigweed’s Sense tutorial
The Sense project is a demo project that utilizes many Pigweed components and shows how they

work together.

https://pigweed.dev/

Libraries and Frameworks336

Sense is a simplified version of an air quality sensor that only includes some of the functions of a

full product. The goal is to give you practical experience with working with Pigweed by following

these steps:

1.	 First, make sure the Docker daemon is running. Start a Docker image in network host

mode and attach it to Bash. You can use the following commands in a Linux environment:

$ sudo systemctl start docker

$ docker run --network=host -d -it --name dev_env mahmutbegovic/
cpp_in_embedded_systems

$ docker exec -it dev_env /bin/bash

For the Windows-based host, use the following command to forward the ports needed

to run the tutorial:

$ docker run -d -it --name dev_env -p 33000:33000 -p 8080:8080
mahmutbegovic/cpp_in_embedded_systems

2.	 Next, clone the Sense repo:

$ git clone https://pigweed.googlesource.com/pigweed/showcase/sense

3.	 Next, start Visual Studio Code, attach to the running container, and open the /workspace/

sense folder. If you see a pop-up message in Visual Studio Code recommending the

installation of the Pigweed extension, accept it; otherwise, go to Extensions, search for

Pigweed, and install it.

Figure 17.1 – Visual Studio Code extension

Figure 17.1 depicts the Visual Studio Code Pigweed extension.

4.	 After the installation of the extension, go to Explorer view and expand the BAZEL BUILD

TARGETS node. Click on the Refresh Target List button.

Chapter 17 337

Figure 17.2 – BAZEL BUILD TARGETS node

Refreshing the target list can take between 30 seconds and a couple of minutes. Pigweed

uses Bazel for build automation. The refreshed target list should look similar to the fol-

lowing:

Figure 17.3 – BAZEL BUILD TARGETS

Figure 17.3 depicts Bazel build targets.

Libraries and Frameworks338

5.	 Next, expand the //apps/blinky node.

Figure 17.4 – //apps/blinky targets

6.	 Now, we will build a version of the app that runs on the host. Right-click simulator_blinky

(host_device_simulator_binary) and then click Build Target. The build can take around

10 minutes. When completed, you should see a message similar to this one:

Figure 17.5 – Successful build

Chapter 17 339

7.	 After a successful build, we will start the app. Right-click simulator_blinky (host_de-

vice_simulator_binary) and then Run Target. If successful, you should see the following

message in the terminal: Awaiting connection on port 33000.

8.	 Next, right-click simulator_console (native_binary) and then Run Target. This will build

a console and connect it to the running simulator. If successful, you should see the fol-

lowing screen:

Figure 17.6 – Interactive console running in terminal view

In Figure 17.6, you can see the interactive console running in the terminal view in Visual

Studio Code.

9.	 To make the console easier to work with, right-click on Run //apps/blinky:simulator_con-

sole and select Move Terminal into New Window. This will move the console into a

separate window, as shown in this image:

Figure 17.7 – Interactive console running in a separate window

Libraries and Frameworks340

In Figure 17.7, in the top-right pane, Device Logs, we can see logs coming from the sim-

ulated device (app running on the host). It sends LED blinking messages every second.

10.	 Next, we will send a message to the device using the RPC protocol, to retrieve the tem-

perature measured by the device. Enter the following command in the bottom-left pane

– Python Repl:

$ device.rpcs.board.Board.OnboardTemp()

You should see the following response:

$ (Status.OK, board.OnboardTempResponse(temp=20.0))

11.	 Next, send a message that will toggle the LED:

$ device.rpcs.blinky.Blinky.Blink(interval_ms=200, blink_count=3)

This call will make the LED blink three times at a 200 ms interval and afterward stop the

LED blinking messages. This shows us that we can also provide arguments to RPC calls.

Next, we will go through Pigweed’s RPC in more detail.

RPC and Protocol Buffers
Pigweed’s RPC system is based on Protocol Buffers – a platform-neutral mechanism used for data

serialization. Protocol Buffers is a language with its own syntax, which can be compiled into a

targeted language such as C++ on our Sense device and the Python code we used in the Python

Read Eval Print Loop (REPL).

So, why use an extra layer of abstraction, such as Protocol Buffers, in an embedded application?

There are a couple of benefits a standardized serialization brings to your projects:

•	 Compact binary messages – they add very little overhead.

•	 A precise contract (a .proto file) between different parts of a system, ensuring that all

parties agree on the structure and meaning of the exchanged data.

•	 Updates to the communication protocol can be managed by modifying a proto file.

In short, instead of writing serialization and deserialization code in multiple code bases (C++ and

Python) and maintaining it as such, you write the communication protocol in a proto file and use

the Protocol Buffers compiler to generate C++ and Python code used for serialization.

Chapter 17 341

Let us examine a part of the modules/blinky/blinky.proto file describing the Blinky service

used in the Pigweed’s Sense tutorial section to blink the LED three times at 200 ms intervals in the

following code:

syntax = "proto3";

package blinky;

import "pw_protobuf_protos/common.proto";

service Blinky {

// Toggles the LED on or off.

rpc ToggleLed(pw.protobuf.Empty) returns(pw.protobuf.Empty);

// Blinks the board LED a specified number of times.

rpc Blink(BlinkRequest) returns (pw.protobuf.Empty);

}

message BlinkRequest {

// The interval at which to blink the LED, in milliseconds. uint32
interval_ms = 1;

// The number of times to blink the LED.

optional uint32 blink_count = 2;

}

This proto file defines a service called Blinky for controlling an LED, using Protocol Buffers version 3

(syntax = "proto3"). It imports a common proto file and defines two methods:

•	 ToggleLed: A simple method that switches the LED on or off, using an empty request

and response.

•	 Blink: A method that blinks the LED with a configurable interval_ms and optional

blink_count (members of BlinkRequest). The use of the optional keyword means this

parameter can be omitted when calling the method.

This is a short explanation of the blinky.proto file. A more thorough guide to Protocol Buffers

can be found at the following website: https://protobuf.dev/programming-guides/proto3/.

For each service in a blinky proto file, Pigweed’s code generator will generate a corresponding

C++ class. The generated Blinky class resides in a dedicated pw_rpc::nanopb sub-namespace

within the file’s package: blinky::pw_rpc::nanopb::Blinky::Service.

https://protobuf.dev/programming-guides/proto3/

Libraries and Frameworks342

The generated class serves as a base class that must be inherited to implement the service’s meth-

ods. It is templated on the derived class. The BlinkyService class implements the base class. The

following code is part of its definition from the modules/blinky/service.h file:

class BlinkyService final : public ::blinky::pw_
rpc::nanopb::Blinky::Service {

public:

 pw::Status ToggleLed(const pw_protobuf_Empty&, pw_protobuf_Empty&);

 pw::Status Blink(const blinky_BlinkRequest& request, pw_protobuf_Empty&);

private:

 Blinky blinky_;

};

BlinkyService bridges the generated RPC interface with the concrete implementation for con-

trolling the LED. It has a private object, blinky_, of type Blinky, which is used to control an LED,

as shown in the implementation of the ToggleLed and Blink methods in the following code block

from the modules/blinky/service.cc file:

pw::Status BlinkyService::ToggleLed(

const pw_protobuf_Empty&,

pw_protobuf_Empty&)

{

 blinky_.Toggle();

 return pw::OkStatus();

}

pw::Status BlinkyService::Blink(

const blinky_BlinkRequest& request,

pw_protobuf_Empty&)

{

 uint32_t interval_ms = request.interval_ms;

 uint32_t blink_count = request.has_blink_count;

 return blinky_.Blink(blink_count, interval_ms);

}

In this code, the methods ToggleLed and Blink use the blinky_ object to control the LED. When

binary proto messages for the blinky service are received over a transport layer, they are converted

into actual calls to the code used to control hardware, which is the essence of RPC.

Chapter 17 343

As an exercise, expand the blinky service by adding the BlinkTwice method. You already know the

files where you need to make changes – the proto file and the BlinkyService implementation files.

Pigweed uses nanopb (https://github.com/nanopb/nanopb) to compile proto files in C files and

then wrap them in C++. There is a pure C++ implementation of Protocol Buffers designed especially

for microcontrollers – Embedded Proto. It is an object-oriented implementation that only uses

static memory allocation. It has been developed using the MISRA C++ guidelines. These traits

together make Embedded Proto suitable for applications with a wide range of requirements, from

low memory usage to safety concerns. You can find more about it on the GitHub page: https://

github.com/Embedded-AMS/EmbeddedProto.

Pigweed has a steep learning curve and should be carefully evaluated based on your system

requirements. It is better suited for larger, more complex projects due to the learning overhead.

Additionally, evaluate the hardware support and take into consideration the memory overhead

some modules may introduce.

In contrast to Pigweed, Intel’s CIB library leverages C++ compile-time capabilities. This approach

minimizes memory overhead while enhancing flexibility and expressiveness. Next, we will cover

the CIB library.

Compile-time Initialization and Build
One of C++’s major advantages in embedded systems is its ability to perform compile-time compu-

tation. In most cases, we have significant knowledge about the application beforehand, allowing

us to configure it at compile time. Intel’s CIB library provides a declarative interface for configuring

firmware components during compilation.

As you saw in Chapter 15, the Observer design pattern is commonly used in event-driven systems

to decouple the source of events (publisher) from the entities that react to those events (observers

or subscribers). By using a subscriber interface, observers can register themselves with the event

source, which then notifies them of changes or events without needing to know details about

the observers’ implementations.

This decoupling allows for greater flexibility and modularity in system design, as components

can be added, removed, or modified without tightly coupling them to the event generator. This

property is leveraged by the CIB library, which implements a compile-time observer pattern to

provide a declarative interface for configuring firmware applications. By resolving dependencies

and establishing event-driven relationships at compile time, CIB eliminates runtime overhead

while keeping components loosely coupled and efficiently interconnected.

https://github.com/nanopb/nanopb
https://github.com/Embedded-AMS/EmbeddedProto
https://github.com/Embedded-AMS/EmbeddedProto

Libraries and Frameworks344

We will start exploring the CIB library on a simple example of a temperature publisher. The entire

example is available at https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/

tree/main/Chapter17/cib. You can run it using the following commands:

$ cmake –B build

$ cmake --build build --target run_in_renode

You can use app/src/main.cpp to follow through the example, as CIB, at the time of writing, is

not available as a library in Compiler Explorer.

Using CIB in a temperature publisher example
Let’s begin with the following steps:

1.	 We first need to declare a service (publisher) as an empty struct that inherits from

callback::service, a variadic class template, provided with types that will be accepted

by subscribers, as shown in the following code:

struct send_temperature : public callback::service<float> {};

2.	 Next, we will create the subscribers (also called components in the context of the CIB

library) display_temperature_component and data_sender_component, as shown in

this code:

struct display_temperature_component {

constexpr static auto display_temperature = [](float temperature) {

 printf("Temperature is %.2f C\r\n", temperature);

};

constexpr static auto config = cib::config(

 cib::extend<send_temperature>(display_temperature)

);

};

struct data_sender_component {

constexpr static auto send_temp = [](float temp) {

 printf("Sending temperature %.2f C\r\n", temp);

};

constexpr static auto config = cib::config(

 cib::extend<send_temperature>(send_temp)

);

};

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17/cib
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17/cib

Chapter 17 345

The preceding code defines two components, which do the following:

•	 Provide handlers for the send_temperature service in the constexpr lambdas

display_temperature and send_temp.

•	 Define the constexpr static auto config member through which they extend

the service (subscribe to the events).

Config members are instances of variadic template class cib::config, and they are used by

the CIB library to wire the application at compile time, that is, to connect services (event

generators, publishers) with software components that extend those services (observers).

Compile-time initialization and the build process are performed by cib::nexus, which

needs to be supplied with the project configuration. Here is the code for configuration

for this simple project:

struct my_project {

constexpr static auto config = cib::config(

 cib::exports<send_temperature>,

 cib::components<display_temperature_component,

 data_sender_component>

);

};

This project configuration is a simple struct, my_project, with the constexpr member

config, which is provided with the following:

•	 cib::exports<send_temperature>: Used to declare services (publishers)

•	 cib::components<display_temperature_component, data_sender_component>:

Used to declare software components that can extend services

3.	 Next, let’s see how we use all of this in a firmware application in the following code:

int main() {

 cib::nexus<my_project> nexus{};

 nexus.init();

 for(int i = 0; i < 3; i++)

 {

 nexus.service<send_temperature>(42.0f);

 }

 return 0;

}

Libraries and Frameworks346

In this code, we perform these steps:

•	 cib::nexus<my_project> nexus{};: Create an instance of the class template

cib::nexus provided by the project configuration my_project.

•	 nexus.init();: Initialize Nexus.

•	 nexus.service<send_temperature>(42.0f);: Access the service and provide

it with the float argument (temperature). This will trigger calls to lambdas in

components that extend the send_temperature service.

Extending the temperature publisher example
Next, we will extend this simple example with two components – a dummy temperature sensor

and I2C components that we will name temperature_sensor_component and i2c. We will also

introduce two new services – runtime_init and main_loop:

1.	 Let’s start with defining new services in this code:

struct runtime_init : public flow::service<> {};

struct main_loop : public callback::service<> {};

Here, we define two services:

•	 runtime_init: Derives from the variadic class template flow::service, allowing

us to sequence actions

•	 main_loop: Derives from callback::service, which will be called in the main

while loop

2.	 We will move now to implementations of I2C components, as shown in this code:

struct i2c {

constexpr static auto init = flow::action<"i2c_init">(

 [](){

 printf("I2C init ...\r\n");

 });

constexpr static auto config = cib::config(

 cib::extend<runtime_init>(*init)

);

};

Chapter 17 347

This code defines a new component – i2c – as a struct with:

•	 constexpr static auto init: A lambda wrapped in flow::action that imple-

ments the initialization of the I2C peripheral.

•	 constexpr static auto config: Adds the above action to the runtime_init flow

service. The * operator explicitly adds an action to the flow. Without it, the action

is referenced but never added, causing a compile-time error.

3.	 Next, let’s go through the temperature sensor component shown in the following code:

struct temperature_sensor_component {

constexpr static auto init = flow::action<"temp_sensor_init">(

 []() {

 printf("Initializing temperature sensor ... \r\n");

 });

constexpr static auto read_temperature = []() {

 float temperature = 23.4f;

 cib::service<send_temperature>(temperature);

};

constexpr static auto config = cib::config(

 cib::extend<main_loop>(read_temperature),

 cib::extend<runtime_init>(i2c::init >> *init)

);

};

The preceding code shows the struct temperature_sensor_component with the following

members:

•	 constexpr static auto init: A flow_action that implements the initialization

of the temperature sensor

•	 constexpr static auto read_temperature: A lambda that implements periodic

readings of a temperature sensor and uses cib::service<read_temperature> to

publish the read value

Libraries and Frameworks348

•	 constexpr static auto config: Extends the main_loop service with the read_

temperature lambda and the runtime_init flow with i2c::init >> *init, in-

dicating that i2c::init precedes init

4.	 Next, we need to modify the my_project struct to export new services and add new com-

ponents, as shown in this code:

struct my_project {

constexpr static auto config = cib::config(

 cib::exports<runtime_init,

 main_loop,

 send_temperature>,

 cib::components<i2c,

 temperature_sensor_component,

 display_temperature_component,

 data_sender_component>

);

};

In this code, we simply added:

•	 The runtime_init and main_loop services to cib::exports

•	 i2c and temperature_sensor_component to cib::components

5.	 Finally, let us see the new main function, as shown here:

int main() {

 cib::nexus<my_project> nexus{};

 nexus.init();

 nexus.service<runtime_init>();

 for(int i = 0; i < 3; i++)

 {

 nexus.service<main_loop>();

 }

 return 0;

}

Chapter 17 349

As previously, we first create a cib::nexus instance and initialize it. Then, we perform

the following steps:

1.	 nexus.service<runtime_init>(): This will run all actions in the flow runtime_

init and ensure the specified order of actions.

2.	 nexus.service<main_loop>(): This is a call in the main loop executing all lambdas

that are extending this service.

This structure is typical for many firmware applications: initialize all components (including

hardware peripherals), then repeatedly call relevant services in the main loop. Any changes to

the application are done in the my_project struct in a declarative way – by extending services

and adding or removing components. All initialization is performed in the components them-

selves, meaning the main function does not need to know the details of individual components

and their dependencies.

The CIB library also includes logging, interrupt, message, and string constant libraries – all le-

veraging C++’s compile-time computation. You can find more information about CIB on GitHub:

https://github.com/intel/compile-time-init-build.

You can run the full CIB example in Renode. Start Visual Studio Code, attach it to the running

container, open the Chapter17/cib project, as described in Chapter 4, and run the following

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake –B build

$ cmake --build build --target run_in_renode

Running the above example will generate the output shown here:

I2C init ...

Initializing temperature sensor ...

Sending temperature 23.40 C

Temperature is 23.40 C

Sending temperature 23.40 C

Temperature is 23.40 C

Sending temperature 23.40 C

Temperature is 23.40 C

https://github.com/intel/compile-time-init-build

Libraries and Frameworks350

This example demonstrates the usage of the CIB library in an event-driven system with loosely

coupled components, where some generate events and others react to them. The wiring of pub-

lishers and subscribers happens at compile time, minimizing the memory footprint and reducing

runtime overhead, while the declarative project configuration improves readability.

Summary
In this chapter, we saw an overview of the libraries used throughout this book – the C++ standard

library and ETL. You also got an insight into Google’s Pigweed library and its capabilities and

Intel’s CIB library.

In the next chapter, we will go through cross-platform development.

18
Cross-Platform Development

In the previous chapters, we explored practical examples of designing and implementing software

components for embedded systems. Each example demonstrated good software design practices

and guided you through the implementation using modern C++ techniques.

The design practices we have followed throughout the book have helped us create portable,

cross-platform code. Writing cross-platform code is important because it enables the reuse of

software components across different hardware configurations. As we conclude this journey, let’s

recap the key practices demonstrated in earlier chapters.

In this chapter, we will cover the following topics:

•	 Importance of writing portable code

•	 SOLID design principles

•	 Testability

Technical requirements
This chapter focuses on cross-platform development. The code shown here runs on multiple

platforms, including common desktop architectures.

You can use Compiler Explorer (https://godbolt.org/) to run the examples. All source code

is available on GitHub at https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/

tree/main/Chapter18.

https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18

Cross-Platform Development352

Importance of writing portable code
Hardware projects mature, evolve, and adapt to market needs and supply chain conditions.

Between 2020 and 2022, the global semiconductor industry faced a severe supply chain crisis,

primarily triggered by the COVID-19 pandemic and worsened by several factors. Lockdowns

disrupted production, while soaring demand for electronics (e.g., laptops, servers) collided with

miscalculations in the automotive sector. Carmakers initially canceled chip orders, then scrambled

to restock as demand rebounded.

As a result, many components became scarce, overpriced, or unavailable altogether. Products had

to adapt by replacing electronic components such as sensors, drivers, communication modules, or

even microcontrollers. This, in turn, required firmware modifications to match the new hardware.

For well-written firmware, this adaptation was relatively straightforward and involved

implementing only hardware-specific interfaces. For example, if a product used an accelerometer

and needed to replace it, a well-designed firmware architecture would require just implementing

the interface for the new component, leaving the business logic unchanged.

Cross-platform code can also run in a simulated environment on a host. In Chapter 17, we ran

Pigweed’s demo application on a host. This was possible, thanks to Pigweed’s well-structured

interface design, which allowed host implementations of low-level hardware interfaces. The

same business application code can run on multiple targets, including the host, where inputs

and outputs are simulated.

Well-structured code is easier to read, change, and maintain. Good design principles keep projects

flexible even as requirements evolve. Next, we will examine the five SOLID principles.

SOLID design principles
The examples throughout this book are aligned with SOLID design principles, originally de-

scribed by Robert C. Martin in his 2000 paper Design Principles and Design Patterns. They serve as a

recognized guide for writing code that remains adaptable and easy to work with over time.

Although the SOLID principles were originally introduced in object-oriented programming, their

focus on creating modular, maintainable, and extensible code can be applied in broader software

design contexts. Each letter in the SOLID mnemonic acronym stands for one principle:

•	 Single Responsibility Principle (SRP): A class should have only one responsibility, giving

it a single reason to change.

Chapter 18 353

•	 Open/Closed Principle (OCP): A class should be open for extension but closed for

modification. A new functionality is added by extending the class through dynamic or

static polymorphism, rather than modifying it.

•	 Liskov Substitution Principle (LSP): Derived classes should be usable in place of their

parent classes without breaking the software’s behavior.

•	 Interface Segregation Principle (ISP): Interface classes should remain small and concise

so that derived classes implement only methods they need.

•	 Dependency Inversion Principle (DIP): High-level modules (e.g., an accelerometer)

should not depend on low-level modules (e.g., I2C). Both should rely on abstractions

(interfaces) rather than concrete implementations.

Next, we’ll go through an example of designing an accelerometer interface, explain how to use

it, and show how it aligns with SOLID principles and why that alignment matters. First, we will

design an accelerometer interface class. The code is shown here:

#include <cstdio>

#include <cstdint>

class accelerometer {

public:

struct data {

 float x;

 float y;

 float z;

};

enum class sampling_rate {

 c_20_hz,

 c_50_hz,

 c_100_hz,

};

enum error {

 ok,

 not_supported

};

virtual error set_sampling_rate(sampling_rate) = 0;

virtual data get_data() = 0;

};

Cross-Platform Development354

The interface class accelerometer shown in the preceding code will be implemented by the

adxl_345 class, which will use the i2c interface to communicate with the actual accelerometer

hardware (the ADXL345 integrated circuit is a small accelerometer with an I2C digital interface).

Also, we will run the code on the STM32 platform, so we will create a (stubbed) implementation

of the i2c interface – i2c_stm32. The code is shown here:

class i2c {

public:

virtual void write() = 0;

};

class i2c_stm32 : public i2c {

public:

void write() override {

 printf("i2c::write...\r\n");

}

};

class adxl_345 : public accelerometer {

public:

adxl_345(i2c &i2c_obj) : i2c_(i2c_obj) {}

error set_sampling_rate(sampling_rate) override {

 printf("adxl_345: setting sampling rate\r\n");

 i2c_.write();

 return error::ok;

}

data get_data() override {

 return data{0.02f, 0.981f, 0.03f};

}

private:

i2c &i2c_;

};

Chapter 18 355

Next, we will design a simple tap_detection_algo class that uses an accelerometer interface to

collect motion data and identify short, sudden movements, typically referred to as taps. The taps

are quick spikes in acceleration that can be used as user input or trigger events in the application.

A boilerplate for the tap-detection class is shown in the following code:

class tap_detection_algo {

public:

tap_detection_algo(accelerometer &accel) : accel_(accel) {

 auto err = accel_.set_sampling_rate(

 accelerometer::sampling_rate::c_100_hz);

 if(err == accelerometer::error::not_supported) {

 // try another sampling rate and adapt

 }

}

bool run () {

 auto accel_data = accel_.get_data();

 printf("algo: x = %.2f, y = %.2f, z = %.2f\r\n", accel_data.x,

 accel_data.y,

 accel_data.z);

 // process data

 return false;

}

private:

 accelerometer &accel_;

};

Finally, we will write code for the main function that instantiates an accelerometer and runs a

tap detection algorithm:

int main() {

 i2c_stm32 i2c1;

 adxl_345 accel(i2c1);

 tap_detection_algo algo(accel);

 algo.run();

 return 0;

}

Cross-Platform Development356

The preceding code is depicted in the following UML diagram:

Figure 18.1 – Tap detection algorithm UML diagram

Figure 18.1 shows the architecture of the software components we designed. The code for the

classes shown in the UML diagram is simplified, and it serves to demonstrate the following

SOLID principles.

Single Responsibility Principle (SRP)
The accelerometer class is an interface class with all virtual methods. Its single responsibility is

to define an interface that will be used by higher-level components and implemented by concrete

accelerometer implementations such as adxl_345.

The adxl_345 class implements the accelerometer interface and it’s only responsible for

implementing communication with the ADXL 345 accelerometer over a serial interface such as

I2C or SPI. The only reason for this class to change is bug fixing related to the communication

with the sensor itself on the higher protocol level, not the serial bus itself.

The i2c class is an interface class with the responsibility of defining an interface for different

implementations of the I2C peripheral, while i2c_stm32 implements this interface. The only

reason for the concrete implementation to change is bug fixing or optimization related to the

serial hardware peripheral.

The tap_detection_algo class takes accelerometer data and implements a tap detection algorithm

using the collected data. The only reason to change this class is to fix or optimize the algorithm.

Chapter 18 357

Open/Closed Principle (OCP)
An interface-based design for the I2C and accelerometer components lets us extend the soft-

ware without modifying any existing code. For example, if we want to run this code on a Texas

Instruments microcontroller, all we need to do is implement the i2c interface for that platform.

Likewise, if we change the accelerometer sensor (e.g., to an ST LSDO6), we only have to implement

the accelerometer interface for the new sensor.

The Liskov Substitution Principle (LSP)
The LSP was introduced by Barbara Liskov in 1987. The LSP focuses on designing robust contracts

between base classes and their subclasses. Any client code that relies on a base class’s contract

should work correctly when using any derived class, without unexpected behavior.

In this example, a contract violation by adxl_345 would occur if it silently fails when an

unsupported sampling rate is requested, rather than handling it in a way that respects the base

class contract (e.g., returning an error status).

The Interface Segregation Principle (ISP)
The ISP is about splitting large, monolithic interfaces into more focused ones so that each class

only implements the methods it actually needs. An example of a violation of this principle would

be having a broad Inertial Measurement Unit (IMU) interface that includes gyroscope and

magnetometer functions, as adxl_345 is only an accelerometer and would be forced to provide

methods it cannot meaningfully support.

The Dependency Inversion Principle (DIP)
The example code we discussed clearly demonstrates the Dependency Inversion Principle (DIP).

By using an interface-based design, software components are cleanly decoupled:

•	 The tap_detection_algo class depends on the accelerometer interface, which is

implemented by adxl_345

•	 The adxl_345 class depends on the i2c interface, which is implemented by i2c_stm32

SOLID principles allow us to write highly decoupled software and create reusable, hardware-in-

dependent code. Decoupled code is more flexible, and it is easier to add new features.

As an exercise, add an accelerometer data logging capability without modifying the existing classes.

Good software design also improves software testability, which we will explore next.

Cross-Platform Development358

Testability
Interface-based design leads to decoupled software, which improves testability. Let us analyze

the former example and see how decoupled design helps with testing. We’ll focus on the tap

detection algorithm.

In this example, we create a simple algorithm that detects a tap when the difference between

the current sample and the previous sample on any axis exceeds a predefined threshold. This

oversimplified implementation is shown in this code:

#include <cmath>

#include <algorithm>

class tap_detection_algo {

public:

tap_detection_algo(accelerometer &accel)

 : accel_(accel), first_sample_(true) {}

bool run() {

 auto current = accel_.get_data();

 if (first_sample_) {

 prev_ = current;

 first_sample_ = false;

 return false;

 }

 bool tap = (std::fabs(current.x - prev_.x) > c_threshold) ||

 (std::fabs(current.y - prev_.y) > c_threshold) ||

 (std::fabs(current.z - prev_.z) > c_threshold);

 prev_ = current;	

 return tap;

}

private:

static constexpr float c_threshold = 0.5f;

accelerometer &accel_;

accelerometer::data prev_;

bool first_sample_ = true;

};

Chapter 18 359

The preceding code implements a simple tap detection algorithm. It accepts an accelerometer

reference and, on each call to run(), retrieves the current sensor data. If it’s the first sample, it

stores the value and returns false (no tap detected). On subsequent calls, it compares the current

reading with the previous one on each axis. If the absolute difference on any axis exceeds a con-

stant threshold, it signals a tap by returning true, then updates the previous sample.

For unit testing, we’ll create a fake_accel class that simulates a sequence of accelerometer

readings. This way, we can control the input data to check if tap_detection_algo works. The

code for the fake_accel class is shown here:

class fake_accel : public accelerometer {

public:

fake_accel(const std::vector<data>& samples)

: samples_(samples), index_(0) {}

error set_sampling_rate(sampling_rate) override {

 return error::ok;

}

data get_data() override {

 if (index_ < samples_.size()) {

 return samples_[index_++];

 }

 return samples_.back();

}

private:

std::vector<data> samples_;

size_t index_;

};

This class, fake_accel, is a test double for the accelerometer interface. It simulates accelerometer

data by:

•	 Accepting a vector of predefined data samples through its constructor.

•	 Implementing set_sampling_rate to always return a successful result.

•	 Returning each sample in order via get_data(), and once all samples are used, it

repeatedly returns the last sample.

Cross-Platform Development360

This makes it useful for testing components that depend on accelerometer readings. Let us see

how to use it to test the tap detection algorithm using the GoogleTest framework in the code

shown here:

TEST(TapDetectionAlgoTest, DetectTapOnSuddenChange) {

std::vector<accelerometer::data> samples = {

 {0.0f, 1.0f, 0.0f}, // initial reading

 {0.0f, 1.0f, 0.0f}, // no change -> false

 {0.0f, 2.0f, 0.0f} // significant change

};

fake_accel fakeAccel(samples);

tap_detection_algo algo(fakeAccel);

EXPECT_FALSE(algo.run());

EXPECT_FALSE(algo.run());

EXPECT_TRUE(algo.run());

}

This test verifies that the tap detection algorithm correctly identifies a sudden change in

accelerometer data as a tap. The test sets up a fake accelerometer with three samples:

•	 First sample: {0.0f, 1.0f, 0.0f} – used for initialization (no tap detection).

•	 Second sample: {0.0f, 1.0f, 0.0f} – no change compared to the first sample, so no

tap is detected.

•	 Third sample: {0.0f, 2.0f, 0.0f} – a significant change on the y axis (a difference of

1.0, which exceeds the threshold of 0.5) triggers tap detection.

The test expects the first two calls to run() to return false and the third call to return true. Thanks

to interface-based design, we can pass a fake_accel reference to the tap_detection_algo con-

structor since fake_accel implements the accelerometer interface. We supply the fake_accel

constructor with a vector container of samples to feed into the algorithm. This allows us to easily

test the algorithm with a test dataset.

The full example can be found at GitHub (https://github.com/PacktPublishing/Cpp-in-

Embedded-Systems/tree/main/Chapter18). Make sure you add the GoogleTest library to

Compiler Explorer when running it.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18

Chapter 18 361

Summary
In this chapter, we learned why writing portable, cross-platform code is important for embedded

development. It allows you to easily reuse software components and adapt to hardware changes,

and it improves testability.

You also learned about SOLID principles and how they apply to the design of software components

in embedded systems using C++. Code readability and flexibility are some of the most important

traits of well-designed software.

We humans read the code, and the human who reads your code may be the future you. So,

having easy-to-read code should be a priority. Sacrifice readability and optimize for performance

only when absolutely needed. Having flexible code allows you to adapt to changes or add new

features easily.

With this chapter, our journey comes to an end. We began by exploring common myths about

C++ and debunking them. From there, we covered many important aspects of modern C++ and

learned how to apply them in embedded application development.

We explored how to use lambdas to write expressive code and took advantage of compile-time

computation to generate lookup tables, conserving memory and processing power. We also lev-

eraged C++ type safety to implement a type-safe HAL.

Next, we learned how to apply design patterns such as Adapter, Observer, and State to solve

typical problems in embedded systems. We explored the C++ Standard Library, ETL, Pigweed,

and cib and learned how to use them in embedded applications.

Throughout all the examples in this book, we focused on writing readable, maintainable, and

loosely coupled code to strengthen our software design and development skills.

I hope you enjoyed this journey and wish you happy coding!

Cross-Platform Development362

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packtpub.com

www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Embedded Systems Architecture, Second Edition

Daniele Lacamera

ISBN: 978-1-80323-954-5

•	 Participate in the design and definition phase of an embedded product

•	 Get to grips with writing code for ARM Cortex-M microcontrollers

•	 Build an embedded development lab and optimize the workflow

•	 Secure embedded systems with TLS

•	 Demystify the architecture behind the communication interfaces

•	 Understand the design and development patterns for connected and distributed devices

in the IoT

•	 Master multitasking parallel execution patterns and real-time operating systems

•	 Become familiar with Trusted Execution Environment (TEE)

Other Books You May Enjoy366

Bare-Metal Embedded C Programming

Israel Gbati

ISBN: 978-1-83546-081-8

•	 Decode microcontroller datasheets, enabling precise firmware development

•	 Master register manipulations for optimized Arm-based microcontroller firmware creation

•	 Discover how to navigate hardware intricacies confidently

•	 Find out how to write optimized firmware without any assistance

•	 Work on exercises to create bare-metal drivers for GPIO, timers, ADC, UART, SPI, I2C,

DMA, and more

•	 Design energy-efficient embedded systems with power management techniques

Other Books You May Enjoy 367

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished C++ in Embedded Systems, we’d love to hear your thoughts! If you purchased

the book from Amazon, please click here to go straight to the Amazon review page for

this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com

Index

Symbols
<cmath> header 330
<cstdint> header 329
<limits> header 329

A
abstract class 112
A-B timing 39-41
Adapter pattern

UART interface 264, 265
airbag control unit (ACU) 36

real-time requirements 36-38
algorithm functions 132

std::copy and std::copy_if 132, 133
std::sort 133, 134

algorithms 332
Analog-to-Digital Converter (ADC) 223
Arm Compiler for Embedded 59

toolchain components 59

ARM GNU Toolchain 78
array 129-131
array-to-pointer conversion 178, 179
array-to-pointer decay 172

asserts 141-144
automatic storage duration 42
Automotive Open System Architecture

(AUTOSAR) 41

B
barectf

reference link 41
beta coefficient 223
Bit Rate Register (BRR) 97
ble_fsm class

refactoring 316, 317
using 311, 312

bloatware 21
Bluetooth Low Energy (BLE) 68, 306
Boost SML 322-324
build system 57

C
C++

C standard library 124, 125
external linkage 124
history 4, 5
language linkage 124
type safety 192-198

Index370

C++ classes, with inheritance and dynamic
polymorphism 108-110

UML class diagrams 113
virtual functions 110, 111
virtual functions, implementation 111-113

C++ compilers 57
C++ expressions

lvalue references 127
rvalue references 127-129
value categories 125, 126

C++ memory-mapped peripherals 244-247
C++ objects

non-static member initialization 102
static member initialization 106, 107
storage duration and initialization 101

C++ specifiers
private 96
public 96

C++ type-safe memory-mapped
peripherals 247-249

HSION bit fields, modeling
from RCC register 249-251

hsion generic versions 252, 253
HSITRIM bit fields, modeling

from RCC register 249-251
hsi_trim generic versions 252, 253

callable
storing 283-286

C code
interoperability with 123

Cfront 6
circular buffer 8
clang-tidy

reference link 67
classes 4, 95

CMake 79
used, for building firmware 86, 87
used, for building Hello,

World! program 83-86
CMSIS memory-mapped

peripherals 242-244
code editor 57
code instrumentation 74
command pattern 206, 207
Common Business Oriented Language

(COBOL) 3
Common Microcontroller Software Interface

Standard (CMSIS) 123, 242
Common Trace Format (CTF) 41
compiler 78
Compiler Explorer 62, 63
compilers 56
compile-time computation 215
compile-time implementation 297

improving 302, 303
variadic templates, using 298-301

Compile-time Initialization
and Build (CIB) 327, 343

in temperature publisher example 344, 345
temperature publisher example,

extending 346-349
compile-time polymorphism 166

class templates, using for 166, 167
curiously recurring template

pattern (CRTP) 168, 170
concepts 164, 165
const_cast 181
consteval specifier 235, 237
constexpr 17-20
constexpr specifier

using 218-220

Index 371

constructors 21-26
converting 104-106

container adaptors 131, 132
container and algorithm header 330

algorithms 332
iterators 331, 332
std::array 330
std::priority_queue 330
std::span 330

containerized development
environment 81-83

CMake, using 83-86
connecting, to Visual Studio Code 87-91
firmware, building with CMake 86, 87

cppcheck
reference link 67

C Standard Input and Output
(cstdio) library 62

C standard library
algorithm functions 132
array 129-131
container adaptors 131, 132
in C++ 124, 125

curiously recurring template
pattern (CRTP) 168, 170

C with classes 6
generic types 8
modern C++ 6, 7

D
Data Watchpoint and Trace (DWT) 39
debugger 57
default member initializers 102-106
dependency injection 265
dependency inversion 166

Dependency Inversion Principle
(DIP) 353, 357

destructors 21-26
deterministic 41

versus non-deterministic 41
development environments 56
Don’t Repeat Yourself (DRY) principle 16
dynamic_cast 185, 186
dynamic memory management 42

automatic storage duration 42
dynamic storage duration 42
in C++ standard library 45-51
memory fragmentation 43, 44
safety-critical guidelines, in C++ 44
static storage duration 42
thread storage duration 42

dynamic polymorphism 114-116
dynamic storage duration 42

E
embedded systems 35
Embedded Template Library (ETL) 327, 333

callable, storing with etl
delegate 334

ETL utilities 334
fixed-size containers 334
reference link 334

Embedded Trace Macrocell (ETM) 74
encapsulation 96-98

setters and getters 98, 99
static methods 99, 100
structs 100, 101

error codes 136-138
exceptions 32, 145-148

Index372

Executable and Linkable Format (ELF) file 64
explicit conversion 181

const_cast 181
dynamic_cast 185, 186
reinterpret_cast 187-189
static_cast 182-185

explicit specifier 105, 106
external fragmentation 43
external linkage 124

F
file management

with RAII 274, 275
Finite State Machine (FSM) 305, 318

ble_fsm class, using 311, 312
current state, tracking 309, 311
events, handling 309, 311
implementation 306-308
implementation, with State pattern 313
output, analyzing 312
states and events 308

firmware code
usage example, analyzing 234, 235

firmware development 78
Fortran 3
freestanding implementation 328
FSM implementation, with State pattern

ble_fsm class, refactoring 316, 317
implementation, State pattern used 313
state class interfaces 313-316
State design pattern 319

functional safety (FuSa) version 59
function-to-pointer conversion 180, 181

G
General Purpose Input Output (GPIO) 39
generic types 8

ring buffer in C 8-15
ring buffer in C++ 15, 16

getter method 98, 99
global error handlers 139, 140
GNU Compiler Collection (GCC) 60, 61
GNU Debugger (GDB) 78
GNU Project Debugger (GDB) 60
GPIO interrupt manager 207-211

H
hal::get_pc() function 144
Hardware Abstraction Layer

(HAL) 79, 241, 259, 260, 327
Host Controller Interface (HCI) 335
hosted implementation 328

I
IAR C/C++ Compiler 59, 60
IAR Embedded Workbench 59
implicit conversion 172

array-to-pointer conversion 178, 179
cases 172, 173
function-to-pointer conversion 180, 181
numeric promotions and

conversions 174-177
types 174

Inertial Measurement Unit (IMU) 357
Instrumentation Trace Macrocell (ITM) 39
integer overflow 27

Index 373

integrated development environments
(IDEs) 57

Interface Segregation Principle
(ISP) 353, 357

internal fragmentation 43
internal linkage 120
Interrupt Request (IRQ) 257
Interrupt Service Routine (ISR) 277
iterators 331

K
Keil Studio 58
Keil μVision 58

L
lambdas 200

example 201, 202
storing, with std::function 203-205

language linkage 124
Last In-First Out (LIFO) 131
Liskov Substitution Principle (LSP) 353, 357
littlefs filesystem 268-271

reference link 268
lookup table

generating 223-230
loose coupling 166
Low-Power Universal Asynchronous

Receiver/Transmitter (LPUART) 114
lvalue references 127

M
Medium Access Control (MAC) address parser

example 220-222
memory fragmentation 43, 44

external fragmentation 43
internal fragmentation 43

memory-mapped peripherals 242
C++ memory-mapped peripherals 244-247
C++ type-safe memory-mapped

peripherals 247-249
CMSIS memory-mapped

peripherals 242-244
microcontrollers (MCUs) 241
Microcontroller Unit (MCU) 39
modern C++ 6, 7
modern software development environment

build automation tool 79
code editor 80
compiler 78, 79
requirements 78
simulator 80

Motor Industry Software Reliability
Association (MISRA) 41

N
name mangling 122
namespaces 118-120
nested namespaces 120, 121
non-deterministic 41

versus deterministic 41
non-static member initialization 102

default member initializers 102-106

Index374

Nordic Semiconductors 60
numeric and math header 329

<cmath> header 330
<cstdint> header 329
<limits> header 329

O
object-oriented programming (OOP) 4, 96
objects 95
Observer pattern 291-294
observers 292
Open/Closed Principle (OCP) 353, 357
operating systems (OSs) 3
optimization 26, 28
overloaded functions 121, 122

P
parameter pack 299
PidController 4
Pigweed 335

Protocol Buffers 340-343
reference link 335
RPC system 340-342
Sense project 336-340

pop function 8
portable code

writing 352
print_ints function 179

profiling 73-75
Program Counter (PC) 39, 74
protected specifier 101
publisher 292
push function 8

R
RAII-based C++ wrapper 271-274
Read Eval Print Loop (REPL) 340
Real Time Transfer (RTT) 41
references 125
reinterpret_cast 187-189

std::memcpy, using 191, 192
using, for type punning 189, 191

Remote Procedure Call (RPC) 335
Renode 80
reset and clock control (RCC) 242
Resource Acquisition is Initialization

(RAII) 259, 267
cleaner file management 274, 275

ring buffer 8
requisites implementing 8

runtime implementation 294-297
runtime profilers 57
Run-Time Type Information

(RTTI) 30, 31, 51, 84
rvalues references 127-129

S
safety-critical embedded systems 36

airbag control unit (ACU) 36
firmware performance, measuring 39
non-determinism, measuring 39

sequencer 277, 279
designing 280-283
implementing 287-290

set function parameter 249
setter method 98, 99

Index 375

signal
writing, for Steinhart-Hart equation 230-233

simulator 80
Single Responsibility Principle

(SRP) 352, 356
Single Wire Output (SWO) 39, 74
software testability 358-360
SOLID design principles 352-356

Dependency Inversion Principle (DIP) 357
Interface Segregation Principle (ISP) 357
Liskov Substitution Principle (LSP) 357
Open/Closed Principle (OCP) 357
Single Responsibility Principle (SRP) 356

stack unwinding 33
standard library 328

container and algorithm header 330
freestanding implementation 328
freestanding implementation,

in GCC 328, 329
hosted implementation 328
hosted implementation, in GCC 328, 329
numeric and math header 329
parts, avoiding in embedded

applications 333
template metaprogramming 332

state class interfaces 313-315
State design pattern 319
State Machine Language (SML) 322
State pattern

implementing 317
implementing, with tag dispatching 320-322

static analysis tools 57
static analyzers 64-67
static binding 109, 121
static_cast 182-185

static classes 265-267
static member initialization 106, 107
static methods 99, 100
static storage duration 42
std::array 330
std::copy and std::copy_if 132, 133
std::expected 149-151
std::function

dynamic memory allocation 212-214
lambdas, storing 203-205

std::optional 149-151
std::priority_queue 330
std::sort 133, 134
std::span 330
Steinhart-Hart equation 230
structs 100, 101
subject 292
Substitution Failure Is Not An Error

(SFINAE) 163
subtyping 114
super-loop 277-279
Systems on a Chip (SoCs) 55

T
tag dispatching

used, for State pattern
implementation 320-322

TemperatureController 4
TemperatureSensor 4
template

basics 156, 157
template function

calling 157-159

Index376

template metaprogramming
(TMP) 16, 160-164, 216, 332

using 216, 217
templates 16, 28-30, 216
template specialization 159, 160
Test-Driven Development (TDD) 72
thread storage duration 42
timers 253-257
trace viewers 41
type punning 189
type-safety 171

U
UART interface

for flexible software design 260-263
in Adapter pattern 264, 265

Unified Modeling Language (UML) 113, 305
unit testing 68-72
Universal Asynchronous

Receiver/Transmitter (UART) 4, 95
unnamed namespaces 120
unwanted C++ features

disabling 51, 53
usual arithmetic conversion 176

V
value categories 125, 126
variadic template 299
virtual functions 110, 111

implementation 111-113
Visual Studio Code 80

containerized development environment,
connecting to 87-91

extensions 80

W
Worst-Case Execution Time (WCET) 41, 73

Y
YAML Ain’t Markup Language (YAML) 41

377

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835881149

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835881149

	Cover
	FM
	Foreword
	Contributors
	Table of Contents
	Preface
	Part I: Introduction to C++ in Embedded Development
	Chapter 1: Debunking Common Myths about C++
	Technical requirements
	A short history of C++
	C with Classes
	Modern C++
	Generic types
	Ring buffer in C
	Ring buffer in C++

	constexpr

	Bloat and runtime overhead
	Constructors and destructors
	Optimization
	Templates
	RTTI and exceptions

	Summary
	Join our community on Discord

	Chapter 2: Challenges in Embedded Systems with Limited Resources
	Technical requirements
	Safety-critical and hard real-time embedded systems
	Airbag control unit and real-time requirements
	Measuring firmware performance and non-determinism
	A-B timing and real-time execution
	Sotware instrumentation with GCC
	Determinism vs. Non-Determinism in Firmware

	Dynamic memory management
	Memory fragmentation
	Safety-critical guidelines for dynamic memory management in C++
	Dynamic memory management in the C++ standard library

	Disabling unwanted C++ features
	Summary

	Chapter 3: Embedded C++ Ecosystem
	Technical requirements
	Compilers and development environments
	Arm Keil MDK and Arm Compiler for Embedded
	IAR C/C++ Compiler and IAR Embedded Workbench for Arm
	Vendor-supported IDEs and GCC
	GCC
	Compiler Explorer

	Static analyzers
	Unit testing
	Profiling
	Summary
	Join our community on Discord

	Chapter 4: Setting Up the Development Environment for a C++ Embedded Project
	Technical requirements
	Requirements for a modern software development environment
	Compiler
	Build automation
	Simulator
	Code editor

	Containerized development environment
	Building the Hello, World! program using CMake
	Building a firmware using CMake

	Containerized development environment and Visual Studio Code
	Summary

	Part II: C++ Fundamentals
	Chapter 5: Classes – Building Blocks of C++ Applications
	Technical requirements
	Encapsulation
	Setters and getters
	Static methods
	Structs

	Storage duration and initialization
	Non-static member initialization
	Default member initializers
	Constructors and member initializer lists
	Converting constructors and explicit specifiers

	Static member initialization

	Inheritance and dynamic polymorphism
	Virtual functions
	Virtual function implementation
	UML class diagrams

	Dynamic polymorphism

	Summary
	Join our community on Discord

	Chapter 6: Beyond Classes – Fundamental C++ Concepts
	Technical requirements
	Namespaces
	Unnamed namespaces
	Nested namespaces

	Function overloading
	Interoperability with C
	External and Language Linkage in C++
	C standard library in C++

	References
	Value categories
	Lvalue references
	Rvalue references

	Standard library containers and algorithms
	Array
	Container adaptors
	Algorithms
	std::copy and std::copy_if
	std::sort

	Summary

	Chapter 7: Strengthening Firmware – Practical C++ Error Handling Methods
	Technical requirements
	Error codes and asserts
	Global error handlers
	Asserts

	Exceptions
	std:: optional and std::expected
	Summary
	Join our community on Discord

	Part III: C++ Advanced Concepts
	Chapter 8: Building Generic and Reusable Code with Templates
	Technical requirements
	Template basics
	Making a call to the template function
	Template specialization

	Template metaprogramming
	Concepts
	Compile-time polymorphism
	Using Class Templates for Compile-Time Polymorphism
	Curiously recurring template pattern (CRTP)

	Summary

	Chapter 9: Improving Type-Safety with Strong Types
	Technical requirements
	Implicit conversion
	Numeric promotions and conversions
	Array-to-pointer conversion
	Function-to-pointer conversion

	Explicit conversion
	const_cast
	static_cast
	dynamic_cast
	reinterpret_cast
	Type punning
	Type punning – the correct way

	Strong types
	Summary
	Join our community on Discord

	Chapter 10: Writing Expressive Code with Lambdas
	Technical requirements
	Lambda expression basics
	Storing lambdas using std::function
	The command pattern
	GPIO interrupt manager

	std::function and dynamic memory allocation
	Summary

	Chapter 11: Compile-Time Computation
	Technical requirements
	Templates
	constexpr specifier
	Example 1 – MAC address parser
	Example 2 – Generating a lookup table
	Generating a lookup table
	Writing a signal representing the Steinhart-Hart equation
	Analyzing the usage example firmware code

	consteval specifier
	Summary
	Join our community on Discord

	Part IV: Applying C++ to Solving Embedded Domain Problems
	Chapter 12: Writing C++ HAL
	Technical requirements
	Memory-mapped peripherals
	CMSIS memory-mapped peripherals
	Memory-mapped peripherals in C++
	Type-safe memory-mapped peripherals in C++
	Modeling HSION and HSITRIM bit fields from the RCC register
	Generic versions of hsion and hsi_trim

	Timers
	Summary

	Chapter 13: Working with C Libraries
	Technical requirements
	Using C HAL in C++ projects
	UART interface for flexible software design
	The UART interface in the Adapter pattern

	Introducing static classes
	Using RAII for wrapping the littlefs C library
	LittleFS – a filesystem for microcontrollers
	Introducing an RAII-based C++ wrapper
	Cleaner file management with RAII

	Summary
	Join our community on Discord

	Chapter 14: Enhancing Super-Loop with Sequencer
	Technical requirements
	Super-loop and motivation for a sequencer
	Designing a sequencer
	Storing a callable
	Implementing a sequencer
	Summary

	Chapter 15: Practical Patterns – Building a Temperature Publisher
	Technical requirements
	The Observer pattern
	Runtime implementation
	Compile-time implementation
	Leveraging variadic templates
	Improving the compile-time implementation

	Summary
	Join our community on Discord

	Chapter 16: Designing Scalable Finite State Machines
	Technical requirements
	FSM – a simple implementation
	Describing states and events
	Tracking current state and handling events – the FSM class
	Using the ble_fsm class
	Analyzing the output

	FSM – implementation using the State pattern
	Understanding state class interfaces
	Refactoring the ble_fsm class
	Implementing the State pattern
	State design pattern

	State pattern implementation using tag dispatching
	Boost SML

	Chapter 17: Libraries and Frameworks
	Technical requirements
	Standard library
	Freestanding and hosted implementations in GCC
	Numeric and math
	<cstdint>
	<limits>
	<cmath>

	Containers and algorithms
	std::array
	std:: priority_queue
	std:: span
	Iterators
	Algorithms

	Template metaprogramming
	Parts of the standard library to avoid in embedded applications

	Embedded template library
	Fixed-size containers
	Storing a callable with etl::delegate
	Other utilities provided by ETL

	Pigweed
	Pigweed’s Sense tutorial
	RPC and Protocol Buffers

	Compile-time Initialization and Build
	Using CIB in a temperature publisher example
	Extending the temperature publisher example

	Summary

	Chapter 18: Cross-Platform Development
	Technical requirements
	Importance of writing portable code
	SOLID design principles
	Single Responsibility Principle (SRP)
	Open/Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	The Interface Segregation Principle (ISP)
	The Dependency Inversion Principle (DIP)

	Testability
	Summary
	Join our community on Discord
	Why subscribe?

	Other Books You May Enjoy
	Index

