


C++ in Embedded Systems

A practical transition from C to modern C++

Amar Mahmutbegović



C++ in Embedded Systems
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, without the prior written permission of the publisher, except in the case of brief 
quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing 
the language and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s 
important to note that the content itself has been crafted by the author and edited by a professional 
publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express or 
implied. Neither the author nor Packt Publishing or its dealers and distributors will be held liable for any 
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products 
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee 
the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Tanisha Mehrotra

Project Manager: Sandip Tadge

Content Engineer: Rashi Dubey

Technical Editor: Tejas Mhasvekar

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Proofreader: Rashi Dubey

Production Designer: Shankar Kalbhor
Growth Leads: Namita Velgekar and Lee Booth

First published: July 2025

Production reference: 1060625

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham 
B3 1RB, UK.

ISBN 978-1-83588-114-9

www.packtpub.com

http://www.packtpub.com


To my wife, Ferisa, and to my parents, Safet and Enisa, for their love and support.

– Amar



Foreword

In this book, C++ in Embedded Systems, Amar Mahmutbegović shows you how to apply modern 

C++ for embedded systems. These systems must often run in constrained environments, with 

limited CPU power, memory, and electrical power, and must satisfy strict requirements for timing 

and reliability. They may need to avoid programming practices such as recursion and dynamic 

memory management.

C has long been the language of choice for embedded systems. However, C++ offers more ex-

pressive abstractions and design paradigms, better type safety, and better resource and memory 

safety, while retaining the low-level hardware access of C. You may have been reluctant to use 

C++ because of past concerns about its suitability for embedded systems. The language and its 

compilers have evolved over the decades to eliminate those concerns. Better type- and memo-

ry-safety mean the compiler finds more errors at compile time without runtime overhead.

Amar takes you through the features of modern C++ (through C++23) that achieve these improve-

ments. These include techniques such as static and dynamic binding, dynamic and compile-time 

polymorphism, templates and metaprogramming, resource management, and compile-time 

computation, as well as patterns and principles that support robust design. He provides simple, 

practical examples written from the perspective of an experienced embedded systems developer.

He shows you how to use tools such as Compiler Explorer and Renode to examine the generated 

machine code and simulate embedded targets to convince yourself that these methods deliver 

on their promises.

The methods you learn here will help you build more reliable, flexible, maintainable, reusable, 

adaptable, and efficient embedded systems.

Steve Branam

Senior Software Development Engineer, Amazon Robotics
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Preface

C++ is a general-purpose, multi-paradigm programming language, supporting procedural, ob-

ject-oriented, and, to some extent, functional programming paradigms. It started out as C with 

classes, but over time it transformed into a modern language that enables writing highly expres-

sive code without sacrificing performance. Despite this, C remains the dominant language in 

embedded development, primarily due to its simplicity and gentler learning curve.     

However, the simplicity of C often makes writing complex systems overly verbose, increasing the 

cognitive burden on developers and making code more error-prone. This is where C++ excels. With 

features such as generic programming, runtime and compile-time polymorphism, compile-time 

computation, and enhanced type and memory safety, it is a superb choice for embedded system 

development.

Myths about C++, such as code bloat and runtime overhead, are still widespread. This book begins 

by debunking these misconceptions and guiding you through C++ fundamentals. It then shifts 

focus to more advanced modern C++ concepts, applying them to solve real-world problems in 

embedded development.  

The goal of this book is to show you how modern C++ can be effectively used in embedded sys-

tems through carefully selected examples and by applying good software development practices.

Who this book is for
This book is for embedded developers who mainly use C in their daily jobs and would like to 

discover modern C++. Some familiarity with C++ is expected but not necessary, as the book also 

covers C++ basics.

What this book covers
Chapter 1, Debunking Common Myths About C++, explores widespread misconceptions about C++ 

and systematically debunks them. You will also gain insight into the history of C++ and the ze-

ro-overhead principle.
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Chapter 2, Challenges in Embedded Systems with Limited Resources, examines the design challeng-

es faced in resource-constrained embedded systems, with a focus on profiling techniques and 

memory management. It also shows how to avoid potentially problematic language features 

such as exceptions and RTTI.

Chapter 3, Embedded C++ Ecosystem, reviews the tools available for C++ development in the em-

bedded domain, including toolchains, static analyzers, profiling tools, and testing frameworks.

Chapter 4, Setting Up the Development Environment for a C++ Embedded Project, walks you through 

setting up a modern development environment for C++ embedded projects, including using a 

simulator to test your code in a virtual setting.

Chapter 5, Classes – Building Blocks of C++ Applications, guides you through understanding classes 

in C++, including storage duration and initialization and inheritance and dynamic polymorphism.

Chapter 6, Beyond Classes – Fundamental C++ Concepts, covers fundamental C++ features such as 

namespaces and function overloading. It also discusses interoperability with C and introduces 

standard library containers and algorithms.

Chapter 7, Strengthening Firmware – Practical C++ Error Handling Methods, goes through various 

error handling techniques in C++, including error codes, asserts, and global handlers. It also 

explains the mechanics of exceptions and how they work.

Chapter 8, Building Generic and Reusable Code with Templates, goes through templates and concepts. 

It also provides an introduction to template metaprogramming and compile-time polymorphism.

Chapter 9, Improving Type-Safety with Strong Types, discusses implicit and explicit type conversions 

in C++ and introduces the concept of strong types. A practical example from an embedded library 

demonstrates how to improve type safety.

Chapter 10, Writing Expressive Code with Lambdas, introduces lambdas and shows you how to use 

them within a command design pattern to implement an expressive interrupt manager.

Chapter 11, Compile-Time Computation, explores C++’s compile-time computation capabilities and 

demonstrates how to use them to build a signal generator library that generates lookup tables 

at compile time.

Chapter 12, Writing C++ HAL, demonstrates the implementation of HAL in C++, using tem-

plate-metaprogramming to ensure type-safety.
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Chapter 13, Working with C Libraries, shows how to effectively use C libraries in C++ projects. It 

demonstrates the RAII principle in an example of using a filesystem C library.

Chapter 14, Enhancing Super-Loop with Sequencer, shows how to improve simple super-loop-based 

designs using a sequencer. It also introduces the Embedded Template Library (ETL) and its 

container class templates with fixed sizes known at compile time.

Chapter 15, Practical Patterns – Building a Temperature Publisher, guides you through the Observer 

design pattern and demonstrates how to apply it in systems such as thermostats and HVAC 

controllers.

Chapter 16, Designing Scalable Finite State Machines, explores different ways to implement finite 

state machines. It begins with a basic enum-switch approach, introduces the State design pattern, 

and then presents the Boost.SML library.

Chapter 17, Libraries and Frameworks, highlights parts of the C++ Standard Template Library that 

are useful for firmware development in constrained systems. It also features the CIB and Pigweed 

libraries.

Chapter 18, Cross-Platform Development, discusses the importance of good software design for 

achieving portability and testability in embedded software.

To get the most out of this book
Many examples in the book can be run in Compiler Explorer (https://godbolt.org/). Use it to 

observe the assembly output of the compiler. Experiment with the examples, tweak them, and 

compile them with different optimization levels and compiler flags to understand how those 

changes affect the compiler output.

Most of the examples can also be run in the Renode simulator. The book is accompanied by a 

Docker container, which includes the GCC toolchain and the Renode simulator, enabling you to 

run the code in an embedded target simulation.

Software/hardware covered in the book Operating system requirements

Docker Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or 

access the code from the book’s GitHub repository (a link is available in the next section). 

Doing so will help you avoid any potential errors related to the copying and pasting of code.

https://godbolt.org/
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Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems. We also have other code bundles from our rich catalog of books and 

videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781835881149.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The PT100 

class is also a TemperatureSensor class, and the TemperatureController class has a member 

(object) of TemperatureSensor and a PidController class.”

A block of code is set as follows:

#define N 20

int buffer[N];

for(int i = 0; i < N; i ++) {

    printf("%d ", buffer[i]);

}

Any command-line input or output is written as follows:

The output of this simple program might be surprising:

resistance = 3.00

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, 

words in menus or dialog boxes appear in the text like this. For example: “Now, we need to add 

the Google Test library by clicking on the Libraries button in the execution pane.”

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems
https://github.com/PacktPublishing
https://packt.link/gbp/9781835881149
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
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Share your thoughts
Once you’ve read C++ in Embedded Systems, we’d love to hear your thoughts! Please click here 

to go straight to the Amazon review page for this book and share your feedback.  

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 

books directly into your application.   

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835881149

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835881149




Part 1
Introduction to C++ in 

Embedded Development
The book begins by exploring common myths about C++ and debunking them. You will gain 

insight into the history of C++ and develop an understanding of the zero-overhead principle. In 

addition, you will examine design challenges in embedded systems and learn how to address 

them using C++. This part also covers the embedded C++ ecosystem and guides you through 

setting up the development environment for a C++ embedded project, including configuring the 

toolchain, build system, and simulator.

This part has the following chapters:  

•	 Chapter 1, Debunking Common Myths about C++

•	 Chapter 2, Challenges in Embedded Systems with Limited Resources

•	 Chapter 3, Embedded C++ Ecosystem

•	 Chapter 4, Setting Up the Development Environment for a C++ Embedded Project





1
Debunking Common Myths 
about C++

Writing software for microcontrollers and embedded systems is challenging. In order to get the 

most out of resource-constrained systems, embedded developers need to have a good knowledge 

of platform architecture. They need to be aware of available resources, including processor capa-

bilities, available memory, and peripherals. The need to have direct access to hardware through 

memory-mapped peripherals has made C the language of choice for embedded systems for half 

a century.

The goal of any programming language is to carry out the process of converting application-spe-

cific abstractions into code that can be transformed into machine code. For instance, Common 

Business-Oriented Language (COBOL) is used for banking applications, and Fortran is used for 

scientific research and heavy mathematic calculations. C is, on the other hand, a general-pur-

pose programming language commonly used in operating systems (OSs) and embedded system 

applications.

C is a language with a simple and easy-to-learn syntax. Having a simple syntax means it is inca-

pable of expressing complex ideas. C allows for complex operations but requires more explicit 

and detailed code to manage complexity, compared to higher-level languages that abstract these 

details away.
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In the late 1970s, high-level languages couldn’t meet the performance of C. This motivated Danish 

computer scientist Bjarne Stroustrup to start working on C with Classes, a predecessor to C++. 

Nowadays, C++ is a multiparadigm language designed with performance in mind. The origin of 

C++ is still a source of some myths, which often causes hesitation in adopting it for embedded 

systems programming. This chapter will introduce you to those myths and debunk them. The 

following topics will be covered in this chapter:

•	 A short history of C++

•	 C with Classes

•	 Bloat and runtime overhead

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. The examples from this chapter are available on GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01).

A short history of C++
In the mid-60s, the simulation programming language SIMULA introduced classes and objects 

to the world of software development. Classes are abstractions that allow us to represent re-

al-world concepts in programming in a concise way, making the code more human-readable. 

In embedded development, UART, SPI, TemperatureSensor, PidController, and Temperatu-

reController are some concepts that can be implemented as classes. SIMULA also introduced 

hierarchical relationships between classes. For example, PT100 class is also a TemperatureSensor 

class, and TemperatureController class has a member instance (object) of TemperatureSensor 

and a PidController. This became known as object-oriented programming (OOP).

In reflecting on the evolution of programming languages, Bjarne Stroustrup, the creator of C++, 

shared his approach to designing C++. Stroustrup aimed to bridge the gap between high-level 

abstractions and low-level efficiency. He said the following:

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter01
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Originally started as C with Classes by Bjarne Stroustrup, C++ transformed into a modern pro-

gramming language that still provides direct access to hardware and memory-mapped peripherals. 

Using powerful abstractions makes writing expressive and highly modular code possible in C++. 

C++ is a general-purpose, multiparadigm language supporting procedural, object-oriented, and, 

to some extent, functional programming paradigms.

While C is still the language of choice for embedded development, accounting for up to 60% of 

embedded projects, the adoption of C++ has grown steadily. With an estimated usage of 20-30% 

in the embedded development field, C++ offers classes, improved type safety, and compile-time 

computation, among other features.

Despite the features that C++ offers, C is still dominant in embedded programming. There are 

many reasons for this, and this chapter will address some of them. C++ is a more complex lan-

guage than C, making it harder for beginner developers. C is easier to learn and makes it possible 

to involve beginner developers in a project faster.

The simplicity of C is good as it allows beginner developers to start contributing to projects faster, 

but it also makes writing complex logic too verbose. This usually results in a larger code base 

due to a lack of expressiveness. This is where C++ steps in with higher abstractions, which, if 

embraced, make code easier to read and comprehend.

The other reasons why C++ is not more widely adopted are related to myths about C++. It is still 

believed that C++ is just “C with classes,” that using C++ is absolutely unacceptable for safety-crit-

ical systems due to dynamic memory allocation in the standard library, or that it produces bloat 

code and adds space and time overhead. This chapter will address some of the most common 

myths about C++ in the context of embedded development. Let’s debunk these myths and shine 

a new light on C++ in embedded systems!

 My idea was very simple. To take ideas from SIMULA for general abstractions for 

the benefits of humans representing things, so humans could get it, with low-level 

stuff, which at that time the best language for that was C, which was done at Bell 

Labs by Dennis Ritchie. And take those two ideas and bring them together so that 

you could do high-level abstraction, but efficiently enough and close enough to 

hardware, for really demanding computing tasks
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C with Classes
Historically speaking, C++ started as C with Classes. The first C++ compiler, Cfront, converted 

C++ to C, but that was a long time ago. Over time, C and C++ evolved separately and are now 

defined by separate language standards. C has maintained its simplicity, while C++ has become 

a modern language that enables abstract solutions for problems without sacrificing performance 

levels. But C++ is still sometimes called C with Classes, which implies that there is no added value 

in C++ except the classes.

The C++11 standard was released in 2011, and it is the second major version of C++. It is packed 

with features that modernize the language, such as range-based loops, lambdas, and constexpr. 

Subsequent releases, C++14, C++17, C++20, and C++23, kept modernizing the language and in-

troducing features that make C with Classes merely a distant predecessor of modern C++.

Modern C++
To demonstrate that C++ is not just C with Classes, let’s explore a couple of short C code examples 

and their modern C++ equivalents. Let’s start with a simple example of printing elements from 

an integer buffer:

#define N 20

int buffer[N];

for(int i = 0; i < N; i ++) {

    printf("%d ", buffer[i]);

}

The preceding C code can be translated into the following C++ code:

std::array<int, 20> buffer;

for(const auto& element : buffer) {

    printf("%d ", element);

}

The first thing we notice is that the C++ version is shorter. It has fewer words, and it’s closer to 

English than the C code. It is easier to read. Now, if you come from a C background and have not 

been exposed to higher-level languages, the first version may look easier to read, but let’s compare 

them. The first thing we notice is that the C code has defined the constant N, which determines 

the size of buffer. This constant is used to define buffer and as a boundary for the for loop.
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Range-based loops, introduced in C++11, remove the cognitive burden of using the size of the 

container in the loop stop condition. The size information is already contained in the std::array 

container, which is utilized by the range-based loop to iterate through the array effortlessly. Also, 

there is no indexing of the buffer, as elements are accessed using constant reference, ensuring 

that the elements are not modified inside the loop.

Let’s look at some simple C code that copies all elements from the array_a integer to array_b if 

smaller than 10:

int w_idx = 0;

for(int i = 0; i < sizeof(array_a)/sizeof(int); i++) {

    if(array_a[i] < 10) {

        array_b[w_idx++] = array_a[i];

    }

}

Here is the C++ code with the same functionality:

auto less_than_10 =  [](auto x) -> bool {

    return x < 10;

};

std::copy_if(std::begin(array_a), std::end(array_a), std::begin(array_b), 
less_than_10);

Instead of manually iterating through array_a and copying elements to array_b only if they 

exceed 10, we can use the copy_if function from C++’s standard template library. The first two 

arguments for std::copy_if are iterators that define the range of elements to consider in array_a: 

the first iterator points to the beginning of the array, and the second iterator points to the position 

just beyond the last element. The third argument is the iterator pointing to the start of array_b, 

and the fourth is the less_than_10 lambda expression.

A lambda expression is an anonymous function object that can be declared at a location where 

it’s invoked or passed as an argument to a function. Please note that lambdas will be covered 

in more detail in Chapter 10. In the case of std::copy_if, the less_than_10 lambda is used to 

determine whether elements from array_a are to be copied to array_b. We could also define a 

standalone less_than_10 function that accepts an integer and returns a Boolean if it is larger 

than 10, but using a lambda, we can write this functionality close to the place where we pass it 

to an algorithm, which makes code more compact and expressive.
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Generic types
Previous examples used the std::array standard library container. It is a class template that 

wraps a C-style array along with its size information. Please note that templates will be covered 

in more detail in Chapter 8. When you use std::array with a specific underlying type and size, 

the compiler defines a new type in the process of instantiation.

std::array<int, 10> creates a container type that has an underlying C-style array of integers 

with a size of 10. The std::array<int, 20> is a container type that has an underlying C-style 

array of integers with a size of 20. The std::array<int, 10> and std::array<int, 20> are 

different types. Both have the same underlying type, but a different size.

std::array<float, 10> would result in a third type, as it differs from std::array<int, 10> by 

the underlying type. Using different parameters yields different types. Template types are generic 

types that become concrete only upon instantiation.

To better understand generic types and appreciate them, let’s examine the implementation of a 

ring buffer in C and compare it with a template-based solution in C++.

Ring buffer in C
A ring or circular buffer is a commonly used data structure in embedded programming. It is 

commonly implemented as a set of functions around an array with write and read indexes used 

to access elements of the array. The count variable is used for array space management. The 

interface consists of push and pop functions, which are explained here:

•	 A push function is used to store elements in a ring buffer. On every push, a data element is 

stored in the array, and the write index is incremented. If the write index becomes equal 

to the number of elements in the data array, it is reset to 0.

•	 A pop function is used to retrieve an element from a ring buffer. On every pop, if the 

underlying array is not empty, we return an element of the array indexed with the read 

index. We increment the read index.

On every push, we increment the count variable and decrement it on pop. If the count becomes 

equal to the size of the data array, we need to move the read index forward.

Let us define the implementation requirements of the ring buffer we want to implement in our 

C module:

•	 It should not use dynamic memory allocation

•	 When the buffer is full, we will overwrite the oldest element
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•	 Provide push and pop functions for storing data in the buffer and retrieving it

•	 Integers will be stored in the ring buffer

Here is a simple solution for the preceding requirements in C:

#include <stdio.h>

#define BUFFER_SIZE 5

typedef struct {

  int arr[BUFFER_SIZE]; // Array to store int values directly

  size_t write_idx;     // Index of the next element to write (push)

  size_t read_idx;      // Index of the next element to read (pop)

  size_t count;         // Number of elements in the buffer

} int_ring_buffer;

void int_ring_buffer_init(int_ring_buffer *rb) {

  rb->write_idx = 0;

  rb->read_idx = 0;

  rb->count = 0;

}

void int_ring_buffer_push(int_ring_buffer *rb, int value) {

  rb->arr[rb->write_idx] = value;

  rb->write_idx = (rb->write_idx + 1) % BUFFER_SIZE;

  if (rb->count < BUFFER_SIZE) {

    rb->count++;

  } else {

    // Buffer is full, move read_idx forward

    rb->read_idx = (rb->read_idx + 1) % BUFFER_SIZE;

  }

}

int int_ring_buffer_pop(int_ring_buffer *rb) {

  if (rb->count == 0) {

    return 0;

  }

  int value = rb->arr[rb->read_idx];
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  rb->read_idx = (rb->read_idx + 1) % BUFFER_SIZE;

  rb->count--;

  return value;

}

int main() {

  int_ring_buffer rb;

  int_ring_buffer_init(&rb);

  for (int i = 0; i < 10; i++) {

    int_ring_buffer_push(&rb, i);

  }

  while (rb.count > 0) {

    int value = int_ring_buffer_pop(&rb);

    printf("%d\n", value);

  }

  return 0;

}

We are using a for loop to initialize the buffer. As the buffer size is 5, values from 5 to 9 will be 

stored in the buffer as the ring buffer overwrites the existing data. Now, what if we want to store 

floats in our ring buffer, chars, or a user-defined data structure? We could implement the same 

logic for different types and create a new set of data structures and functions called float_ring_

buffer or char_ring_buffer. Can we make a solution that could store different data types and 

use the same functions?

We could use an unsigned char array as storage for different data types and use a void pointer 

to pass different data types to push and pop functions. The only thing that’s missing is knowing 

the size of the data type, and we can address that by adding a size_t elem_size member to the 

ring_buffer structure:

#include <stdio.h>

#include <string.h>

#define BUFFER_SIZE 20 // Total bytes available in the buffer

typedef struct {
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  unsigned char data[BUFFER_SIZE]; // Array to store byte values

  size_t write_idx;                // Index of the next byte to write

  size_t read_idx;                 // Index of the next byte to read

  size_t count;     // Number of bytes currently used in the buffer

  size_t elem_size; // Size of each element in bytes

} ring_buffer;

void ring_buffer_init(ring_buffer *rb, size_t elem_size) {

  rb->write_idx = 0;

  rb->read_idx = 0;

  rb->count = 0;

  rb->elem_size = elem_size;

}

void ring_buffer_push(ring_buffer *rb, void *value) {

  if (rb->count + rb->elem_size <= BUFFER_SIZE) {

    rb->count += rb->elem_size;

  } else {

    rb->read_idx = (rb->read_idx + rb->elem_size) % BUFFER_SIZE;

  }

  memcpy(&rb->data[rb->write_idx], value, rb->elem_size);

  rb->write_idx = (rb->write_idx + rb->elem_size) % BUFFER_SIZE;

}

int ring_buffer_pop(ring_buffer *rb, void *value) {

  if (rb->count < rb->elem_size) {

    // Not enough data to pop

    return 0;

  }

  memcpy(value, &rb->data[rb->read_idx], rb->elem_size);

  rb->read_idx = (rb->read_idx + rb->elem_size) % BUFFER_SIZE;

  rb->count -= rb->elem_size;

  return 1; // Success

}

int main() {
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  ring_buffer rb;

  ring_buffer_init(&rb, sizeof(int)); // Initialize buffer for int values

  for (int i = 0; i < 10; i++) {

    int val = i;

    ring_buffer_push(&rb, &val);

  }

  int pop_value;

  while (ring_buffer_pop(&rb, &pop_value)) {

    printf("%d\n", pop_value);

  }

  return 0;

}

This ring buffer solution can be used to store different data types. As we avoid using dynamic 

memory allocation and the data buffer size was determined at compile time, we are not flexible 

when it comes to defining the size of the memory needed for different instances of the ring buffer. 

Another problem we have is type safety. We can easily call ring_buffer_push with a pointer to a 

float and ring_buffer_pop with a pointer to an integer. The compiler can’t address this concern, 

and the possibility of a catastrophe is real. Also, by using a void pointer, we added a layer of in-

direction as we have to rely on memory to retrieve data from the data buffer.

Can we address type-safety concerns and make it possible to define the size of the ring buffer in 

C? We can use the token-pasting (##) operator to create a set of functions for different types and 

sizes using macros. Let’s quickly go through a simple example of using the ## operator before 

jumping into ring buffer implementation using this technique:

#include <stdio.h>

// Macro to define a function for summing two numbers

#define DEFINE_SUM_FUNCTION(TYPE) \

TYPE sum_##TYPE(TYPE a, TYPE b) { \

    return a + b; \

}

// Define sum functions for int and float

DEFINE_SUM_FUNCTION(int)
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DEFINE_SUM_FUNCTION(float)

int main() {

    int result_int = sum_int(5, 3);

    printf("Sum of integers: %d\n", result_int);

    float result_float = sum_float(3.5f, 2.5f);

    printf("Sum of floats: %.2f\n", result_float);

    return 0;

}

DEFINE_SUM_FUNCTION(int) will create a sum_int function that accepts and returns integers. If 

we call the DEFINE_SUM_FUNCTION macro with float, it will result in creating sum_float. Now 

that we have a good understanding of the token-pasting operator, let’s continue with ring buffer 

implementation:

#include <stdio.h>

#include <string.h>

// Macro to declare ring buffer type and functions for a specific type and 
size

#define DECLARE_RING_BUFFER(TYPE, SIZE) \

typedef struct { \

    TYPE data[SIZE]; \

    size_t write_idx; \

    size_t read_idx; \

    size_t count; \

} ring_buffer_##TYPE##_##SIZE; \

void ring_buffer_init_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb) { \

    rb->write_idx = 0; \

    rb->read_idx = 0; \

    rb->count = 0; \

} \

void ring_buffer_push_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb, 
TYPE value) { \

    rb->data[rb->write_idx] = value; \

    rb->write_idx = (rb->write_idx + 1) % SIZE; \
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    if (rb->count < SIZE) { \

        rb->count++; \

    } else { \

        rb->read_idx = (rb->read_idx + 1) % SIZE; \

    } \

} \

int ring_buffer_pop_##TYPE##_##SIZE(ring_buffer_##TYPE##_##SIZE *rb, TYPE 
*value) { \

    if (rb->count == 0) { \

        return 0; /* Buffer is empty */ \

    } \

    *value = rb->data[rb->read_idx]; \

    rb->read_idx = (rb->read_idx + 1) % SIZE; \

    rb->count--; \

    return 1; /* Success */ \

}

// Example usage with int type and size 5

DECLARE_RING_BUFFER(int, 5) // Declare the ring buffer type and functions 
for integers

int main() {

    ring_buffer_int_5 rb;

    ring_buffer_init_int_5(&rb); // Initialize the ring buffer

    // Push values into the ring buffer

    for (int i = 0; i < 10; ++i) {

        ring_buffer_push_int_5(&rb, i);

    }

    // Pop values from the ring buffer and print them

    int value;

    while (ring_buffer_pop_int_5(&rb, &value)) {

        printf("%d\n", value);

    }

    return 0;

}
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Now, this solution solves our problems of type safety and defining the size of a ring buffer, but it 

suffers from readability, both in implementation and when using it. We need to “call” DECLARE_

RING_BUFFER outside of any function, as it is basically a macro that defines a set of functions. We 

also need to know what it does and the signature of functions it will generate. We can do this 

better with templates. Let’s see what an implementation of a ring buffer looks like in C++.

Ring buffer in C++
Let’s make a generic implementation of a ring buffer using templates. We can use a std::array 

class template as the underlying type and wrap our push-and-pop logic around it. The following 

is code that illustrates how the ring_buffer type could look in C++:

#include <array>

#include <cstdio>

template <class T, std::size_t N> struct ring_buffer {

  std::array<T, N> arr;

  std::size_t write_idx = 0; // Index of the next element to write (push)

  std::size_t read_idx = 0;  // Index of the next element to read (pop)

  std::size_t count = 0;     // Number of elements in the buffer

  void push(T t) {

    arr.at(write_idx) = t;

    write_idx = (write_idx + 1) % N;

    if (count < N) {

      count++;

    } else {

      // buffer is full, move forward read_idx

      read_idx = (read_idx + 1) % N;

    }

  }

  T pop() {

    if (count == 0) {

      // Buffer is empty, return a default-constructed T.

      return T{};

    }

    T value = arr.at(read_idx);
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    read_idx = (read_idx + 1) % N;

    --count;

    return value;

  }

  bool is_empty() const { return count == 0; }

};

int main() {

  ring_buffer<int, 5> rb;

  for (int i = 0; i < 10; ++i) {

    rb.push(i);

  }

  while (!rb.is_empty()) {

    printf("%d\n", rb.pop());

  }

  return 0;

}

The ring buffer implementation in C++ using templates is more readable and easier to use than 

the token-pasting-based solution in C. The ring_buffer template class can be used to instantiate 

ring buffer types with integer, float, or any other underlying types with different sizes. The same 

push-and-pop logic can be applied to ring buffers with different underlying types. We can apply 

the Don’t Repeat Yourself (DRY) principle to different types thanks to templates. Templates 

make generic types easy to implement, something that’s quite challenging and verbose in C.

Templates are also used for template metaprogramming (TMP), a programming technique in 

which a compiler uses templates to generate temporary source code, which is merged by the 

compiler with the rest of the source code and then compiled. One of the most famous examples of 

TMP is calculating a factorial at compile time. TMP is an advanced technique that will be covered 

in Chapter 8. Modern C++ also features the constexpr specifier, a much more beginner-friendly 

technique for compile-time computation.



Chapter 1 17

constexpr
C++11 introduced the constexpr specifier, which declares that it is possible to evaluate the value 

of the function or a variable at compile time. The specifier evolved over time, extending the func-

tionality. A constexpr variable must be immediately initialized, and its type must be a literal 

type (int, float, etc.). This is how we declare a constexpr variable:

constexpr double pi = 3.14159265359;

Using the constexpr specifier is the preferred way of declaring compile-time constants in C++ 

over using a C-style approach with macros. Let’s analyze a simple example using C-style macros:

#include <cstdio>

#define VOLTAGE 3300

#define CURRENT 1000

int main () {

    const float resistance = VOLTAGE / CURRENT;

    printf("resistance = %.2f\r\n", resistance);

    return 0;

}

The output of this simple program might be surprising:

resistance = 3.00

Both VOLTAGE and CURRENT are parsed as integer literals, and so is the result of the division. 

Floating-point literals are declared using the f suffix, which was omitted in this case. Using 

constexpr to define compile-time constants is safer, as it allows us to specify the type of a con-

stant. This is how we would write the same example using constexpr:

#include <cstdio>

constexpr float voltage = 3300;

constexpr float current = 1000;

int main () {

    const float resistance = voltage / current;

    printf("resistance = %.2f\r\n", resistance);
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    return 0;

}

This would result in

resistance = 3.30

This simple example shows that constexpr compile-time constants are both safer and easier to 

read than traditional C-style macro constants. The other major usage of the constexpr specifier 

is to hint to the compiler that a function can be evaluated at compile time. Some of the require-

ments that a constexpr function must meet are as follows:

•	 The return type must be a literal type

•	 Each of the function parameters must be a literal type 

•	 If the constexpr function is not a constructor, it needs to have precisely one return state-

ment

Let us examine a simple example utilizing constexpr functions:

int square(int a) {

    return a*a;

}

int main () {

    int ret = square(2);

    return ret;

}

To better understand what is going on under the hood, we will inspect the assembly output of 

the preceding code. Assembly is quite close to the machine code, or the instructions that will be 

executed on our target, thus inspecting it gives us an estimate of the work (number of instructions) 

performed by the processor. The assembly output of the compilation of the preceding program for 

the ARM architecture using an ARM GCC compiler and no optimization is shown in the following:

square(int):

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        str     r0, [r7, #4]
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        ldr     r3, [r7, #4]

        mul     r3, r3, r3

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

main:

        push    {r7, lr}

        sub     sp, sp, #8

        add     r7, sp, #0

        movs    r0, #2

        bl      square(int)

        str     r0, [r7, #4]

        ldr     r3, [r7, #4]

        mov     r0, r3

        adds    r7, r7, #8

        mov     sp, r7

        pop     {r7, pc}

The resulting assembly code is doing the following:

•	 Manipulating the stack pointer

•	 Calling the square function

•	 Storing value returned by r0 to address contained into r7 with offset 4

•	 Loading the value from address stored in r7 with offset 4 into r3

•	 Moving the value from r3 to r0, which is the ARM calling convention’s designated register 

for storing return values

We can see that there are some unnecessary operations in the output binary, which both increase 

the binary size and affect the performance. This example is, both valid C and valid C++ code, and 

compiling it with both C and C++ compilers will yield the same assembly code.

If we use the constexpr specifier for the square function, we are instructing the compiler that it 

is possible to evaluate it at compile time:

constexpr int square(int a) {

    return a*a;

}
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int main() {

    constexpr int val = square(2);

    return ret;

}

This code results in a compile-time evaluation of the square(2) expression, making the val 

integer a constexpr variable, that is, a compile-time constant. The following is the resulting 

assembly code:

main:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        movs    r3, #4

        str     r3, [r7, #4]

        movs    r3, #4

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

As we can see, the program returns the value 4, which is the result of the square(2) compile-time 

computation. There is no square function in the generated assembly, just the result of the calcu-

lation that the compiler performed for us. This simple example demonstrates the power of com-

pile-time computing. We can move heavy computation from runtime to compile time whenever 

we know all the computation parameters, which is often. This approach can be used to generate 

lookup tables or complex mathematical signals, which will be demonstrated in the following 

chapters of this book.

C++ has come a long way since C with Classes. The examples in this chapter show what C++ can 

offer over C – expressive, more readable, compact code; standard template library containers; 

algorithms; user-defined generic types; and compile-time computation, just to start with. I hope 

I managed to debunk the myth that C++ is just C with classes. The next common myth about 

C++ is that it makes bloated code and adds runtime overhead. Let’s keep debunking the myths 

about C++!
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Bloat and runtime overhead
The term bloatware describes unwanted software that is preinstalled with an OS on a device. Un-

wanted software in the world of programming describes code inserted in a binary by a framework, 

a library, or a language construct itself. Language constructs in C++ that are blamed for causing 

code bloat are constructors, destructors, and templates. We will analyze these misconceptions 

by examining assembly output generated from C++ code.

Constructors and destructors
The first thing that comes to mind to non-C++ developers when you mention C++ is that it is an 

object-oriented language and that you are bound to instantiate objects. Objects are instances of 

classes. They are variables that occupy memory. Special functions, called constructors, are used 

to construct or instantiate objects.

Constructors are used to initialize objects, including the initialization of class members, and de-

structors are used to clean up resources. They are tightly tied to an object’s life cycle. An object is 

created using a constructor, and when the object variable goes out of scope, the destructor is called.

Constructors and destructors both increase the size of the binary and add runtime overhead, 

as their execution takes time. We will examine the impact of constructors and destructors on 

a simple example of a class with one private member, a constructor, a destructor, and a getter:

class MyClass

{

    private:

         int num;

    public:

        MyClass(int t_num):num(t_num){}

        ~MyClass(){}

        int getNum() const {

            return num;

        }

};

int main () {

   MyClass obj(1);

   return obj.getNum();

}
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MyClass is a very simple class that has one private member, which we set through the constructor. 

We can access it through a getter, and just for good measure, we declared a destructor, which is 

empty. The following is the assembly equivalent of the preceding code compiled with no opti-

mization enabled:

MyClass::MyClass(int) [base object constructor]:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7]

        ldr     r3, [r7, #4]

        ldr     r2, [r7]

        str     r2, [r3]

        ldr     r3, [r7, #4]

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

MyClass::~MyClass() [base object destructor]:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        str     r0, [r7, #4]

        ldr     r3, [r7, #4]

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

MyClass::getNum() const:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        str     r0, [r7, #4]

        ldr     r3, [r7, #4]

        ldr     r3, [r3]
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        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

main:

        push    {r4, r7, lr}

        sub     sp, sp, #12

        add     r7, sp, #0

        adds    r3, r7, #4

        movs    r1, #1

        mov     r0, r3

        bl      MyClass::MyClass(int) [complete object constructor]

        adds    r3, r7, #4

        mov     r0, r3

        bl      MyClass::getNum() const

        mov     r4, r0

        nop

        adds    r3, r7, #4

        mov     r0, r3

        bl      MyClass::~MyClass() [complete object destructor]

        mov     r3, r4

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        pop     {r4, r7, pc}

Don’t worry about the assembly if you don’t understand it. We can see there are some labels for 

functions and a whole lot of instructions. That’s a lot of instructions for a simple abstraction of a 

class; this is the bloat code that we don’t want in our binary. To be more precise, we have 59 lines 

of assembly code. If we were to enable optimization, the resulting assembly would be a couple of 

lines long, but let’s keep analyzing this problem with no optimization involved. The first thing 

we are noticing is that the destructor doesn’t do anything useful. If we remove it from the C++ 

code, the resulting assembly is 44 lines long:

MyClass::MyClass(int) [base object constructor]:

        push    {r7}

        sub     sp, sp, #12
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        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7]

        ldr     r3, [r7, #4]

        ldr     r2, [r7]

        str     r2, [r3]

        ldr     r3, [r7, #4]

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

MyClass::getNum() const:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        str     r0, [r7, #4]

        ldr     r3, [r7, #4]

        ldr     r3, [r3]

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

main:

        push    {r7, lr}

        sub     sp, sp, #8

        add     r7, sp, #0

        adds    r3, r7, #4

        movs    r1, #1

        mov     r0, r3

        bl      MyClass::MyClass(int) [complete object constructor]

        adds    r3, r7, #4

        mov     r0, r3

        bl      MyClass::getNum() const

        mov     r3, r0

        nop
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        mov     r0, r3

        adds    r7, r7, #8

        mov     sp, r7

        pop     {r7, pc}

As we can see, there is no call to the destructor, and there is no destructor code in the binary. The 

lesson is you don’t pay for what you don’t use. This is one of the design principles of C++. By deleting 

the destructor, there is no need for the compiler to generate any code for it and to call it when the 

object variable goes out of the scope.

The next thing we must realize is that C++ is not an OOP language. It is a multiparadigm language. 

It is procedural, object-oriented, generic, and even a little bit functional at the same time. If we 

want to have private members that can be set only through constructors, then we need to pay the 

price for that. Structs in C++ have public members by default, so let’s change the MyClass class 

to a MyClass struct with no constructor:

struct MyClass

{

    int num;

};

int main () {

   MyClass obj(1);

  

   return obj.num;

}

Setter and getter functions are common in the OOP paradigm, but C++ is not (just) an OOP 

language and we are not bound to using setters and getters. When we remove the getNum getter, 

we have a very basic example of a struct with just one member. The resulting assembly is only 

14 lines long:

main:

        push    {r7}

        sub     sp, sp, #12

        add     r7, sp, #0

        movs    r3, #1

        str     r3, [r7, #4]
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        ldr     r3, [r7, #4]

        mov     r0, r3

        adds    r7, r7, #12

        mov     sp, r7

        ldr     r7, [sp], #4

        bx      lr

As trivial as this example is, its purpose is to establish two ground truths:

•	 You don’t pay for what you don’t use

•	 Using C++ doesn’t mean you are bound to an OOP paradigm

We need to pay the price in binary size if we want to use abstractions such as constructors and 

destructors. Using types (classes and structs) without instantiating objects in C++ offers signifi-

cant benefits to your embedded software design beyond traditional object-oriented approaches. 

We’ll explore this through detailed examples in the upcoming chapters.

In this and previous examples, we compiled C++ code with disabled optimizations, and we were 

able to see the resulting assembly code results in unnecessary operations that can be removed. 

Let’s check the assembly code for the last example with the O3 optimization level enabled:

main:

        movs    r0, #1

        bx      lr

The preceding assembly is the output of the original example with the class, constructor, de-

structor, and getter function. The resulting program has just two instructions. The value of the 

num member of the obj variable is stored in the r0 register as the return value. Assembly code is 

stripped of all necessary instructions related to stack manipulation and usage of r3 to store a value 

in a stack pointer with an offset of 4, reload it to r3, and move it to r0. The resulting assembly is 

just a few lines of code.

Removing unnecessary instructions is a job for the optimization process. Yet, optimization is often 

avoided in embedded projects, as some claim that it breaks code. But is that true?

Optimization
Unoptimized code results in unnecessary instructions affecting binary size and performance. 

However, many embedded projects are still built with disabled optimization, as developers do 

not trust the compiler and are afraid it will break the program. There is some truth to this, but as it 

turns out, this happens when the program is not well formed. The program is not well formed if 

it contains undefined behavior.
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One of the best-known examples of undefined behavior is signed integer overflow. The standard 

doesn’t define what happens if you add 1 to the maximum value of the signed integer on your 

platform. The compiled program is not required to do anything meaningful. A program is not 

well formed. Let’s examine the following code:

#include <cstdio>

#include <limits>

int foo(int x) {

    int y = x + 1;

    return y > x;

}

int main() {

    if(foo(std::numeric_limits<int>::max())) {

        printf("X is larger than X + 1\r\n");

    }

    else {

        printf("X is NOT larger than X + 1. Oh nooo !\r\n");

    }

    return 0;

}

Compiling the code using GCC for both x86 and Arm Cortex-M4 will yield the same results. If 

the program is compiled without the optimization, the foo function returns 0, and you can see X 

is NOT larger than X + 1. Oh nooo ! in the output. The compiler does the integer overflow, and if 

we pass the maximum integer value to foo, it will return 0. Keep in mind that the standard does 

not specify this, and this behavior depends on the compiler. 

If we compile the program with optimization enabled, the output is X is larger than X + 1, which 

means that foo returns 1. Let’s examine the assembly output of the program compiled with the 

optimization:

foo(int):

        movs    r0, #1

        bx      lr

.LC0:

        .ascii  "X is larger then X + 1\015\000"
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main:

        push    {r3, lr}

        movw    r0, #:lower16:.LC0

        movt    r0, #:upper16:.LC0

        bl      puts

        movs    r0, #0

        pop     {r3, pc}

As we can see, foo doesn’t perform any calculations. The compiler assumes that the program is well 

formed and that there is no undefined behavior. foo will always return 1. It is up to the developer 

to ensure that there is no undefined behavior in the program. This is exactly the reason why the 

myth that the optimization breaks the program is still alive. It is easier to blame the compiler for 

not handling the undefined behavior.

Of course, it is possible that there is a bug in a compiler that breaks the functionality of the program 

if the optimization is used, and the program works fine if it is disabled. This is very rare but not 

unheard of, and that’s why there are verification techniques such as unit and integration testing 

that ensure the functionality of the code, whether it is built with or without the optimization 

enabled.

Optimization is reducing the binary size and improving performance by removing unnecessary 

instructions from the machine code. Undefined behavior is compiler-dependent and must be 

handled by the developer to ensure the program is well formed. Techniques such as unit and 

integration testing should be put in place to validate the functionality of the program, mitigat-

ing the risk of compiler malforming the program. The optimization process is essential for using 

abstractions in C++ code while keeping the binary footprint minimum and performance at a 

maximum. We will use the highest optimization level, O3, in the rest of the book.

The next suspect for code bloat that we will examine are templates. How do they cause the code 

bloat, and what value do they bring to our embedded code bases?

Templates
Instantiating templates with different parameters will result in the compiler generating distinct 

types, which effectively increases the binary size. This is to be expected. We have the exact same 

situation with the generic implementation of a ring buffer in C using the token-pasting operator 

and macros. An alternative is type erasure, which we used in C implementation using a void pointer. 

It suffers in flexibility if we impose the restriction of static data allocation and performance due 

to pointer indirection.
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Using generic types is a choice of design. We can use them and pay the price in increased binary 

size, but that would also happen if we were to implement ring buffers for different data types 

separately (ring_buffer_int, ring_buffer_float, etc.). Maintaining a single templated type 

is much easier than fixing the same bug in a few different places in the code base. The usage of 

generic types doesn’t result in a binary size any larger than the size of an equivalent implemen-

tation of individual types. Let’s examine the impact of templates on binary size in relation to 

separate implementations using the ring_buffer example:

int main() {

#ifdef USE_TEMPLATES

  ring_buffer<int, 10> buffer1;

  ring_buffer<float, 10> buffer2;

#else

  ring_buffer_int buffer1;

  ring_buffer_float buffer2;

#endif

  for (int i = 0; i < 20; i++) {

    buffer1.push(i);

    buffer2.push(i + 0.2f);

  }

  for (int i = 0; i < 10; i++) {

    printf("%d, %.2f\r\n", buffer1.pop(), buffer2.pop());

  }

  return 0;

}

The program will use a generic ring_buffer type if built with USE_TEMPLATES defined, and it will 

use the ring_buffer_int and ring_buffer_float types otherwise. If we build this example with 

GCC with no optimization enabled, it will result in a slightly bigger binary size in the template 

version (24 bytes). This is due to larger symbols in the symbol table when using the templated 

version. If we strip the symbol table from the object files, they will result in the same size. Also, 

building two versions with O3 results in the same binary size.
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Generic types do not increase the binary size more than if we wrote instantiated types by hand 

as separate types. Templates have an effect on the build time due to the instantiation of concrete 

types in different compilation units, and there are techniques to avoid this if needed. All functions 

related to the instantiated types with the same parameters will result in a single function in the 

binary, as the linker will remove duplicate symbols.

RTTI and exceptions
Runtime type information (RTTI) in C++ is a mechanism that allows the type of an object to be 

determined at runtime. Most compilers implement RTTI using the virtual tables. Each polymor-

phic class (a class with at least one virtual function) has a virtual table that, among other things, 

includes type information for runtime type identification. RTTI imposes both time and space 

costs. It increases binary size and affects the runtime performance if type identification is used. 

This is the reason why compilers have a way of disabling RTTI. Let’s examine a simple example 

with a base and derived class:

#include <cstdio>

struct Base {

    virtual void print () {

        printf("Base\r\n");

    }

};

struct Derived : public Base {

    void print () override {

        printf("Derived\r\n");

    }

};

void printer (Base &base) {

    base.print();

}

int main() {

    Base base;

    Derived derived;

    printer(base);

    printer(derived);
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  return 0;

}

The output of the program is as follows:

Base

Derived

Classes with virtual functions have vtables that are used for dynamic dispatching. Dynamic 

dispatch is a process of selecting which implementation of a polymorphic function is used. The 

printer function accepts a reference to the Base class. Depending on the type of reference passed 

to printer (Base or Derived), the dynamic dispatching process will select the print method from 

either the Base or Derived class. Vtables are also used to store type information.

By using dynamic_cast, as a part of the RTTI mechanism, we can find the information about the 

type using a reference or pointer to the superclass. Let’s modify the printer method from the 

previous example:

void printer (Base &base) {

    base.print();

    if(Derived *derived = dynamic_cast<Derived*>(&base); derived!=nullptr) 
{

        printf("We found Base using RTTI!\r\n");

    }

}

The output is as follows:

Base

Derived

We found Base using RTTI!

As we already mentioned, RTTI can be disabled. In GCC, we can do this by passing the -fno-rtti 

flag to the compiler. If we try to compile the modified example using this flag, the compiler will 

raise error: dynamic_cast' not permitted with '-fno-rtti'. If we restore the printer 

method to the original implementation, remove the if statement, and build it with both RTTI 

enabled and then disabled, we can notice that the binary size is larger when RTTI is enabled. RTTI 

is useful in certain scenarios, but it adds a massive overhead to resource-constrained devices, so 

we will leave it disabled.



Debunking Common Myths about C++32

Another C++ feature that is often disabled in embedded projects in C++ is exceptions. Exceptions 

are an error-handling mechanism based on a try-catch block. Let’s take a look at a simple example 

utilizing exceptions to understand them better:

#include <cstdio>

struct A {

  A() { printf("A is created!\r\n"); }

  ~A() { printf("A is destroyed!\r\n"); }

};

struct B {

  B() { printf("B is created!\r\n"); }

  ~B() { printf("B is destroyed!\r\n"); }

};

void bar() {

    B b;

    throw 0;

}

void foo() {

  A a;

  bar();

  A a1;

}

int main() {

  try {

    foo();

  } catch (int &p) {

    printf("Catching an exception!\r\n");

  }

  return 0;

}
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The output of the program is as follows:

A is created!

B is created!

B is destroyed!

A is destroyed!

Catching an exception!

In this simple example, foo is called in the try block. It creates a local object, a, and calls bar. 

The bar function creates a local object, b, and throws an exception. In the output, we see that A 

and B are created, then B gets destroyed, then A gets destroyed, and we finally see that the catch 

block gets executed. This is called stack unwinding, and for it to happen, standard implemen-

tations most commonly utilize unwind tables, which store information about catch handlers, 

destructors to be called, and so on. Unwind tables can grow large and become complex, which 

increases the memory footprint of the application and introduces non-determinism due to the 

mechanism used at runtime for exception handling. This is why exceptions are often disabled in 

embedded system projects.

Summary
C++ is guided by the zero-overhead principle. The only two language features that do not follow 

it are RTTI and exceptions, and that’s why compilers support a switch for turning them off.

The zero-overhead principle is based on two statements that we established in this chapter:

•	 You don’t pay for what you don’t use

•	 What you do use is just as efficient as what you could reasonably write by hand

RTTI and exceptions are disabled in most embedded projects, so you don’t pay for them. Using 

generic types and templates is a design choice and is no more expensive than writing individual 

types by hand (ring_buffer_int, ring_buffer_float, and so on), but it lets you reuse the code 

logic for different types, makes the code more readable and easier for maintenance.

Working on high-risk systems is not a reason to disable compiler optimization capabilities. Code 

functionality needs to be verified whether we are building a program with optimization disabled 

or enabled. The most common source of bugs when optimization is enabled is undefined behavior. 

Understanding the undefined behavior and preventing it is up to the developer.
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Modern C++ is a language that has a lot to offer to the embedded world. The mission of this book 

is to help you discover C++ and what it can do for your embedded projects, so let’s embark on the 

path of discovering C++ and utilizing it to solve problems in the embedded domain.

In the next chapter, we will go over challenges in embedded systems with limited resources and 

dynamic memory management in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems


2
Challenges in Embedded 
Systems with Limited Resources

If you are reading this book, chances are you have a good grasp of embedded systems. There are 

many definitions of embedded systems, and while the following may not be the most common, 

it captures the essence shared by others. Embedded systems are specialized computing systems 

for specific use with a limited set of responsibilities, in contrast to general-purpose computing 

systems. Embedded systems can be embedded in a larger electronic or mechanical system, or 

act as a standalone device.

The line between embedded systems and general-purpose computing devices is sometimes 

blurred. We can all agree that the system that controls a toaster or a pump in an airplane is an 

embedded system. Cellphones and early smartphones were also considered embedded systems. 

Nowadays, smartphones are closer to the definition of a general-purpose computing device. In 

this book, we will focus on firmware development using modern C++ on small embedded systems 

or resource-constrained embedded systems.

Resource-constrained embedded systems are often employed in safety-critical applications. They 

have a responsibility to control a process in a timely manner and they cannot fail, as failure can 

mean the loss of human lives. In this chapter, we will cover limitations imposed by regulations 

on software development for safety-critical devices and implications for the usage of C++. We 

will learn how to mitigate these concerns.
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In this chapter, we’re going to cover the following main topics:

•	 Safety-critical and hard real-time embedded systems

•	 Dynamic memory management

•	 Disabling unwanted C++ features

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard, 

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter02).

Safety-critical and hard real-time embedded systems
Safety-critical embedded systems are systems whose failure may result in damage to property 

or environment, injury to people, or even a loss of life. Failure of these systems is not acceptable. 

Brakes, steering systems, and airbags in cars are good examples of safety-critical systems. The 

correct functioning of these systems is essential for the safe operation of a vehicle.

Next, we will analyze the real-time requirements of an airbag control unit in a car.

Airbag control unit and real-time requirements
Safety-critical embedded systems often impose hard real-time requirements, meaning that 

any missed deadline results in system failure. An Airbag Control Unit (ACU) collects data 

from accelerometers and pressure sensors, runs an algorithm that processes the collected data, 

and detects side, front, and rear-end crashes. Upon the crash detection, the ACU controls the 

deployment of different restraint systems, including airbags and seat belt tensioners.

ACU implementations must be resilient to different scenarios, such as malfunctioning sensors and 

electronics. These are mitigated by redundant sensors, comparing data from sensors, comparing 

data against thresholds, and self-tests. Most importantly, ACUs need to meet timing requirements, 

as they have only a couple of milliseconds to collect data, make decisions, and initiate deployment 

of restraint systems.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter02
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter02
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The ACU fails if it doesn’t detect a crash on time, but it also fails if it deploys restraint systems 

just a bit too late, as this can do more harm to a driver and passengers than if the ACU hadn’t 

initiated a deployment at all. This is why an ACU must meet hard real-time requirements, and 

when it comes to firmware, this means all the worst-case execution times must be predictable.

The effect of delayed airbag deployment is the subject of many studies concerned with injuries 

caused to occupants. The following extract is part of the conclusion from the paper Study regarding 

the influence of airbag deployment time on the occupant injury level during a frontal vehicle collision, 

published at MATEC Web of Conferences 184(1):01007, by authors Alexandru Ionut Radu, Corneliu 

Cofaru, Bogdan Tolea, and Dragoș Sorin Dima, outlining results of simulations of delayed airbag 

deployment:

A graphic illustration of collision and delayed airbag deployment is shown in the following figure 

(source: https://www.researchgate.net/publication/326715516_Study_regarding_the_
influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_

vehicle_collision):

“It has been found that by increasing the delay of the airbag deployment time in the 

event of a frontal impact, the probability of injury to the occupant’s head increases 

by up to 46%. Reducing the distance between the occupant’s head and the dashboard 

/ steering wheel when the airbag ignites would result in a force expansion of the gas 

that is transmitted to the occupant’s head generating an extra acceleration and also 

throws back the occupant increasing the injury potential due to the impact between 

the head and headrest. Thus, an increase in injury probability of 8% was observed 

in the 0 ms delay of the airbag deployment, while a 100 ms delay resulted in a 54% 

increase in the head acceleration value. So, the role of the airbag is reversed, it no 

longer has the role of cushioning the collision, but to generate injuries.”

https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision
https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision
https://www.researchgate.net/publication/326715516_Study_regarding_the_influence_of_airbag_deployment_time_on_the_occupant_injury_level_during_a_frontal_vehicle_collision
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Figure 2.1 – Crash simulation with delayed restraint system deployment

Figure 2.1 effectively illustrates what happens if an ACU doesn’t meet hard real-time requirements 

and produces delayed results. The figure is taken from the paper Study regarding the influence of 

airbag deployment time on the occupant injury level during a frontal vehicle collision.

 There are multiple reasons why an ACU may fail and cause no or a delayed deployment:

•	 Sensor malfunctioning

•	 Electronics malfunctioning

•	 Crash detection algorithm failure

•	 Firmware failure to meet a deadline

Sensors and electronics malfunctioning are mitigated by redundancy, data sanity checks, cross-

comparison, and startup and runtime self-tests. This puts additional stress on firmware and 

its correct functioning. A crash detection algorithm may fail due to a bad model that was built 

upon, or other factors that are out of firmware responsibilities. The firmware’s job is to feed the 

algorithm with sensors’ data on time, execute it in a timely manner within a set time window, 

and act based on the output of the algorithm.
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Measuring firmware performance and non-determinism
How do we ensure that the firmware will run all functions within imposed real-time requirements? 

We measure it. We can measure different metrics, such as performance profiling, response to 

external events, and A-B timing. Performance profiling will tell us in which functions the program 

spends the most time. Response to external events will indicate how much time it takes for a 

system to respond to an external event, such as an interrupt or a message on a communication bus.

A-B timing and real-time execution
The most important metric when dealing with real-time requirements is A-B timing. We measure 

how long it takes for firmware to execute a program from point A to point B. A-B timing can 

measure a function’s duration, but not necessarily. We can use it to measure different things. 

Going from A to B can take different times, based on the state of the system and inputs.

A simple way to make an A-B measurement is toggling a General Purpose Input Output (GPIO) 

and using an oscilloscope to measure the time between changes of a GPIO. It’s a simple solution 

that works well but doesn’t scale, as we would need a GPIO for every function we want to 

measure or we’d need to measure one function at a time. We could also use the internal timer of 

a Microcontroller Unit (MCU)to make precise measurements and output that information over a 

UART port. This would require us to utilize a general-purpose timer just for the sake of measuring. 

Most microcontrollers have specialized units for instrumentation and profiling.

Some ARM-based microcontrollers have a Data Watchpoint and Trace (DWT) unit. DWT is used 

for data tracing and system profiling, including the following:

•	 Program Counter (PC) sampling

•	 Cycle counting

DWT generates events and outputs them using an Instrumentation Trace Macrocell (ITM) unit. 

The ITM unit can also be used to output data generated from the firmware itself, in the printf 

style. ITM buffers data and sends it over to an ITM sink. Single Wire Output (SWO) can be used 

as an ITM sink.

We can utilize DWT and ITM for profiling as follows:

1.	 DWT can generate periodic sampling of the PC and use ITM to send them over SWO.

2.	 On a host machine, we capture and analyze the received data.

3.	 By using a linker map file for our firmware, we can generate the distribution of time spent 

in each of the functions in our program.



Challenges in Embedded Systems with Limited Resources40

This can help us to see which function takes the most time. It’s not particularly useful for A-B 

timing measurements, but it allows us to see where the program spends most of the time without 

any direct software instrumentation except setting up DWT and ITM units.

Sotware instrumentation with GCC
GNU Compiler Collection (GCC) supports software instrumentation by using the -finstrument-

functions flag to instrument functions’ entries and exists. This inserts entry and exit calls to 

each function with the following signature:

__attribute__((no_instrument_function))

void __cyg_profile_func_enter(void *this_fn, void *call_site)

{

}

__attribute__((no_instrument_function))

void __cyg_profile_func_exit(void *this_fn, void *call_site)

{

}

We can utilize DWT and ITM in the __cyg_profile_func_enter and __cyg_profile_func_exit 

functions to send the clock cycle count and analyze it on the host machine to make A-B timing 

measurements. The following is an example of a simplified implementation of entry and exit 

functions:

extern "C" {

__attribute__((no_instrument_function))

void __cyg_profile_func_enter(void *this_fn, void *call_site)

{

    printf("entry, %p, %d", this_fn, DWT_CYCCNT);

}

__attribute__((no_instrument_function))

void __cyg_profile_func_exit(void *this_fn, void *call_site)

{

    printf("exit, %p, %d", this_fn, DWT_CYCCNT);

}

}

The preceding implementation uses extern "C" as a linkage language specifier for entry and 

exit instrumentation functions as they are linked with C libraries by the compiler. The example 

also assumes that printf is redirected to use ITM as output and that the cycle counter register 

in DWT is started.
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Another option is to use ITM’s timestamping and send both timestamps and function addresses 

from entry and exit instrumentation functions. With the help of a linker map file, we can then 

reconstruct the sequence of function calls and returns. There are specialized formats for sending 

traces, such as Common Trace Format (CTF), and desktop tools called trace viewers that can 

allow us to streamline software instrumentation. CTF is an open format used to serialize an event 

in a packet with one or more fields. Specialized tools, such as barectf (https://barectf.org/

docs/barectf/3.1/index.html) are used to facilitate CTF packet generation.

Events are described using a YAML Ain’t Markup Language (YAML) configuration file. A simple 

C library containing trace functions is generated by barectf using the configuration file. These 

functions are used in source code in places where we want to emit traces.

CTF traces can be sent over different transport layers such as ITM or serial. Traces can be analyzed 

using tools such as Babeltrace (https://babeltrace.org) and TraceCompass (https://eclipse. 

dev/tracecompass). There are other tools that facilitate trace generation, transfer, and viewing 

such as SEGGER SystemView. On the target side, a small software module provided by SEGGER 

is included to make calls to tracing functions. Traces are sent over SEGGER’s Real Time Transfer 

(RTT) protocol using SWD and analyzed in SystemView.

We covered some basic approaches to A-B timing. There are more advanced techniques, and they 

often depend on the target capabilities, as there are some more advanced tracing units that can 

be utilized for A-B measurements.

Determinism vs. Non-Determinism in Firmware
If we measure the duration of a function using the A-B timing approach and have the same 

duration and function output for the same inputs, we say that the function is deterministic. If 

a function depends on a global state and the measured duration is different for the same inputs, 

we say it is non-deterministic.

Default dynamic memory allocators in C++ tend to be non-deterministic. The duration of 

allocation depends on the current global state of the allocator and the complexity of the allocating 

algorithm. We can measure duration for the same inputs with different global states, but it is hard 

to evaluate all possible global states and to guarantee the Worst-Case Execution Time (WCET) 

with default allocators.

The non-deterministic behavior of dynamic memory allocation is just one problem for safety-

critical systems. The other problem is that it can fail. If there is no more available memory or if 

the memory is fragmented, then the allocation can fail. This is why many safety coding standards 

such as Motor Industry Software Reliability Association (MISRA) and Automotive Open System 

Architecture (AUTOSAR) discourage dynamic memory.

https://barectf.org/docs/barectf/3.1/index.html
https://barectf.org/docs/barectf/3.1/index.html
https://babeltrace.org
https://eclipse.dev/tracecompass
https://eclipse.dev/tracecompass
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We will explore dynamic memory management implications and safety-critical concerns next.

Dynamic memory management
The C++ standard defines the following storage durations for objects:

•	 Automatic storage duration: Objects with automatic storage duration are automatically 

created and destroyed as the program enters and exits the block in which they are defined. 

These are typically local variables within functions, except those declared static, extern, 

or thread_local.

•	 Static storage duration: Objects with static storage duration are allocated when the 

program starts and deallocated when the program ends. All objects declared at the 

namespace scope (including the global namespace) have this static duration, plus those 

declared with static or extern.

•	 Thread storage duration: Introduced in C++11, objects with thread storage duration are 

created and destroyed with the thread in which they are defined, allowing each thread 

to have its own instance of a variable. They are declared with the thread_local specifier.

•	 Dynamic storage duration: Objects with dynamic storage duration are explicitly created 

and destroyed using dynamic memory allocation functions (new and delete in C++), giving 

the software developer control over the lifetime of these objects.

Dynamic storage gives great flexibility to a software developer, providing full control over an 

object’s lifetime. With great power comes great responsibility. Objects are dynamically allocated 

using the new operator and freed using delete. Every object that is allocated dynamically must be 

freed exactly once and should never be accessed after it has been freed. This is a straightforward 

rule but failing to follow it causes a range of problems, such as the following:

•	 Memory leaks occur when dynamically allocated memory is not freed properly. Over time, 

this unused memory accumulates potentially exhausting system resources.

•	 Dangling pointers happen when a pointer still references a memory location that has 

been freed. Accessing such a pointer leads to undefined behavior.

•	 Double free errors occur when memory that has already been freed is deleted again, leading 

to undefined behavior.

Another problem with dynamic memory management is memory fragmentation.
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Memory fragmentation
Memory fragmentation occurs when free memory is divided into small, non-contiguous blocks 

over time, making it difficult or impossible to allocate large blocks of memory even when there 

is enough free memory available in total. There are two main types:

•	 External fragmentation: This happens when there is enough total memory available 

to satisfy an allocation request but no single continuous block is large enough due to 

fragmentation. It’s common in systems where memory allocation and deallocation occur 

frequently, and sizes vary significantly.

•	 Internal fragmentation: This occurs when allocated memory blocks are larger than the 

requested memory, leading to wasted space within allocated blocks. It happens when 

using allocators that have fixed-size memory blocks or memory pools and with allocators 

designed to give WCET.

Memory fragmentation leads to inefficient memory use, reducing the performance or preventing 

further allocations resulting in out-of-memory scenarios, even when it appears that sufficient 

memory is available. Let’s visualize the memory region reserved for dynamic memory allocation 

in the following figure:

Figure 2.2 – Memory region used for dynamic allocation
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In Figure 2.2, each block represents a memory unit allocated during the allocation process. Empty 

regions were not allocated, or they were freed using the delete operator. Even though there is 

plenty of memory available, if there were a request for the allocation of four memory units, the 

allocation would fail, as there are not four continuous memory blocks available due to memory 

fragmentation.

Non-deterministic behavior of default memory allocators and out-of-memory scenarios are major 

concerns for safety-critical systems. MISRA and AUTOSAR provide coding guidelines for the use 

of C++ in safety-critical systems.

MISRA is an organization that provides guidelines for the software developed for electronic 

components used in the automotive industry. It is a collaboration between vehicle manufacturers, 

component suppliers, and engineering consultancies. Standards produced by MISRA are also used 

in aerospace, defense, space, medical, and other industries.

AUTOSAR is a global development partnership by automotive manufacturers, suppliers, and 

other companies from the electronics, semiconductor, and software industries. AUTOSAR also 

produces guidelines for the use of C++ in critical and safety-related systems.

Safety-critical guidelines for dynamic memory management 
in C++
MISRA C++ 2008, which covers the C++03 standard, prohibits the usage of dynamic memory 

allocation, while AUTOSAR’s Guidelines for the use of the C++14 language in critical and safety-related 

systems specifies, among others, the following rules:

•	 Rule A18-5-5 (required, toolchain, partially automated)

“Memory management functions shall ensure the following: (a) deterministic 

behavior resulting with the existence of worst-case execution time, (b) 

avoiding memory fragmentation, (c) avoid running out of memory, (d) 

avoiding mismatched allocations or deallocations, (e) no dependence on 

non-deterministic calls to kernel.”
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•	 Rule A18-5-6 (required, verification / toolchain, non-automated)

Now, following these two rules to the letter is an extremely hard task. We can write a custom 

allocator that has deterministic WCET and minimizes fragmentation, but how do we write an 

allocator that avoids running out of memory? Or, in case it happens, how do we ensure the non-

failure of the system? Every call to the allocator would need to verify the success of the operation 

and, in case of failure, somehow mitigate it. Or we would need to be able to estimate the amount 

of memory needed for an allocator accurately, so it doesn’t run out of memory in runtime under 

any circumstances. This adds a whole new layer of complexity to our software design and adds 

more complexity than we would add value by allowing dynamic memory allocation.

An in-between approach to dynamic memory allocation policy is to allow it on startup, but not 

when the system is running. This is the policy used by Joint Strike Fighter Air Vehicle C++ Coding 

Standards. MISRA C++ 2023 also advises against the usage of dynamic memory allocation when 

the system is running, and as a mitigation policy, recommends using it at startup.

The C++ standard library uses dynamic memory allocation heavily. Exception handling mechanism 

implementations also often use dynamic allocation. Before dismissing the idea of using the 

standard library in embedded projects, let’s discover the internal workings of the std::vector 

container and see what C++ offers to mitigate our concerns.

Dynamic memory management in the C++ standard library
We introduced std::vector as a container from the standard library that uses dynamic memory 

allocation. vector is a template class, and we can specify the underlying type. It stores the elements 

contiguously, and we can get direct access to the underlying contiguous storage using the data 

method. 

 “An analysis shall be performed to analyze the failure modes of dynamic 

memory management. In particular, the following failure modes shall be 

analyzed: (a) non-deterministic behavior resulting with nonexistence of 

worst-case execution time, (b) memory fragmentation, (c) running out of 

memory, (d) mismatched allocations and deallocations, (e) dependence on 

non-deterministic calls to kernel.”
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The following code example demonstrates the usage of a vector:

  std::vector<std::uint8_t> vec;

  constexpr std::size_t n_elem = 8;

  for (std::uint8_t i = 0; i < n_elem; i++) {

    vec.push_back(i);

  }

  const auto print_array = [](uint8_t *arr, std::size_t n) {

    for (std::size_t i = 0; i < n; i++) {

      printf("%d ", arr[i]);

    }

    printf("\r\n");

  };

  print_array(vec.data(), n_elem);

We created a vector with the underlying uint8_t type and added values from 0 to 8 using the push_

back method. The example also demonstrates access to a pointer to the underlying contiguous 

storage, which we provided as an argument to the print_array lambda.

The usual allocation strategy of vector is to allocate one element on the first insertion, then 

double it each time it reaches its capacity. Storing values for 0 to 8 would result in 4 allocation 

requests, as shown in the following figure:

Figure 2.3 – Vector allocation requests
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Figure 2.3 depicts the vector’s allocation requests. In order to inspect vector implementation on 

any platform, we can overload the new and delete operators and monitor the allocation requests:

void *operator new(std::size_t count) {

  printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

  return std::malloc(count);

}

void operator delete(void *ptr) noexcept {

  printf("%s\r\n", __PRETTY_FUNCTION__);

  std::free(ptr);

}

The new overloaded operator passes allocation calls to malloc, and it prints out the size requested 

by the caller. The delete overloaded operator just prints out the function signature so we can see 

when it is called. Some standard library implementations using GCC implement the new operator 

using malloc. Our vector allocation calls will result in the following output:

void* operator new(std::size_t), size = 1

void* operator new(std::size_t), size = 2

void operator delete(void*)

void* operator new(std::size_t), size = 4

void operator delete(void*)

void* operator new(std::size_t), size = 8

void operator delete(void*)

The preceding results are obtained using the GCC compiler, and they are the same both for x86_64 

and Arm Cortex-M4 platforms. When the vector fills the available memory, it requests allocation 

of the doubled amount of currently used memory. It then copies data from the original storage 

to newly acquired memory. Afterward, it deletes previously used storage, as we can see from the 

preceding generated output.

Overloading the new and delete operators would allow us to change the allocation mechanism 

globally, in order to meet the safety-critical guidelines requesting for deterministic WTEC and 

avoiding out-of-memory scenarios, which is quite challenging.

The allocation requests from the vector can be optimized by using the reserve method if the 

number of elements is known beforehand:

  vec.reserve(8);
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Using the reserve method will make the vector request eight elements, and it will ask for more 

memory only if we go beyond eight elements. This makes it useful for projects that allow dynamic 

allocation at startup if we can guarantee that the number of elements at any point will stay within 

reserved memory. If we add a ninth element to the vector, it will make another allocation request, 

requesting the memory to fit 16 elements.

The C++ standard library also makes possible usage of local allocators for containers. Let’s take 

a look at the vector’s declaration:

template<

    class T,

    class Allocator = std::allocator<T>

> class vector;

We can see that the second template parameter is Allocator, and the default argument 

is std::allocator, which uses the new and delete operators. C++17 introduced 

std::pmr::polymorphic_allocator, an allocator that exhibits different allocation behavior 

depending upon the std::pmr::memory_resource type from which it is constructed.

There is a memory resource that can be constructed by providing it with an initial, statically 

allocated buffer, and it’s called std::pmr::monotonic_buffer_resource. The monotonic buffer 

is built for performance, and it releases memory only when it is destroyed. Initializing it with 

a statically allocated buffer makes it suitable for embedded applications. Let’s see how we can 

use it for a vector:

  using namespace std;

  using namespace std::pmr;

  array<uint8_t, sizeof(uint8_t) * 8> buffer{0};

  monotonic_buffer_resource mbr{buffer.data(), buffer.size()};

  polymorphic_allocator<uint8_t> pa{&mbr};

  std::pmr::vector<uint8_t> vec{pa};

In the preceding example, we do the following:

1.	 Create a std::array container, with an underlying type of uint8_t.

2.	 Construct a monotonic buffer and provide it with the array we just created as the initial 

buffer.

3.	 Use the monotonic buffer to create a polymorphic allocator, which we use to create a vector.



Chapter 2 49

Please note that the vector is from the std::pmr namespace, and it’s just a partial specialization 

of std::vector, as shown here:

namespace pmr {

    template< class T >

    using vector = std::vector<T, std::pmr::polymorphic_allocator<T>>;

}

A vector created by utilizing a monotonic buffer will allocate memory in the space provided by 

the buffer. Let’s examine the behavior of such a vector in the following example built from the 

previously explained code:

#include <cstdio>

#include <cstdlib>

#include <array>

#include <memory_resource>

#include <vector>

#include <new>

void *operator new(std::size_t count, std::align_val_t al) {

  printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

  return std::malloc(count);

}

int main() {

  using namespace std;

  using namespace std::pmr;

  constexpr size_t n_elem = 8;

  array<uint8_t, sizeof(uint8_t) * 8> buffer{0};

  monotonic_buffer_resource mbr{buffer.data(), buffer.size()};

  polymorphic_allocator<uint8_t> pa{&mbr};

  std::pmr::vector<uint8_t> vec{pa};

  //vec.reserve(n_elem);

  for (uint8_t i = 0; i < n_elem; i++) {

    vec.push_back(i);
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  }

  for (uint8_t data : buffer) {

    printf("%d ", data);

  }

  printf("\r\n");

  return 0;

}

The preceding program will provide the following output:

void* operator new(std::size_t, std::align_val_t), size = 64

0 0 1 0 1 2 3 0

We see that even though we used the monotonic buffer, the program called the new operator. 

You can notice that the call to the reserve method is commented. This will result in a vector-

expanding strategy, as described previously. When the monotonic buffer initial memory is used, 

it will fall to the upstream memory resource pointer. The default upstream memory resource will 

use the new and delete operators.

If we print the buffer used as initial storage for monotonic_buffer_resource, we can see that the 

vector is allocating the first element and storing 0 to it, then it doubles it and stores 0 and 1, and 

then doubles it again, storing 0, 1, 2, and 3. When it tries to double it again, the monotonic buffer 

will not be able to meet the allocation request and will fall to using the default allocator, which 

relies on the new and delete operators. We can visualize this in the following figure:

Figure 2.4 – State of the buffer used by the monotonic buffer resource

Figure 2.4 depicts the internal state of the used by the monotonic buffer resource. We can see that 

the monotonic buffer resource is not deallocating memory in any way. On an allocation buffer 

request, it returns a pointer to the last available element in the initial buffer if there is enough 

space in the buffer to fit the requested number of elements.
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You will notice that the new operator used in this example has a different signature from the one 

previously used. Actually, the standard library defines different versions of new and matching 

delete operators, and it’s hard to tell which version is used by a container from the standard 

library without inspection. This makes overloading them globally and replacing implementation 

with a custom one even more challenging, making a local allocator usually a better choice.

The polymorphic allocator utilizing a monotonic buffer initialized with a buffer on the stack may 

be a good option to mitigate some of the issues imposed by the dynamic memory management 

when working with containers from the standard C++ library. The approach we demonstrated 

on the vector can be used on other containers from standard libraries, such as list and map, but 

also other types from the library, such as basic_string.

Mitigating concerns of dynamic memory allocation is possible but it still poses some challenges. 

If you want to be absolutely sure that your C++ program is not calling a new operator, there are 

means to ensure it. Let us explore how we can disable unwanted C++ features.

Disabling unwanted C++ features
You may have noticed that we used printf from the C standard library for printing debug 

information on standard output instead of std::cout from the C++ standard library. The reason 

is twofold – the implementation of the std::cout global object from ostream has a large memory 

footprint and it uses dynamic memory allocation. C++ works well with the C standard library, 

and using printf is a good alternative for resource-constrained systems.

We already discussed the exception handling mechanism, which often relies on dynamic memory 

allocation. Disabling exceptions in C++ is as easy as passing the appropriate flag to the compiler. 

In the case of GCC, that flag is –fno-exceptions. The same goes for Run-Time Type Information 

(RTTI). We can disable it with the –fno-rtti flag.

Disabling exceptions will result in calling std::terminate when an exception is thrown. We can 

replace the default terminate handler with our own implementation and handle it appropriately, 

as shown in the following example:

#include <cstdio>

#include <cstdlib>

#include <exception>

#include <array>

int main() {

  constexpr auto my_terminate_handler = []() {

    printf("This is my_terminate_handler\r\n");
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    std::abort();

  };

  std::set_terminate(my_terminate_handler);

  std::array<int, 4> arr;

  for (int i = 0; i < 5; i++) {

   arr.at(i) = i;

  }

  return 0;

}

The preceding example demonstrates setting the terminate handler using std::set_terminate 

by our own implementation. This allows us to handle cases that shouldn’t happen in runtime 

and try to recover from them or gracefully terminate them. Some features or behaviors in C++ 

can’t be disabled by compiler flags, but there are other means to handle them,

As we saw previously, we can redefine global new and delete operators. We can also delete them, 

which will make the compilation fail if we use a software component that calls new, effectively 

allowing us to prevent any attempts of dynamic memory allocation if needed:

#include <cstdio>

#include <vector>

#include <new>

void *operator new(std::size_t count) = delete;

void *operator new[](std::size_t count) = delete;

void *operator new(std::size_t count, std::align_val_t al) = delete;

void *operator new[](std::size_t count, std::align_val_t al) = delete;

void *operator new(std::size_t count, const std::nothrow_t &tag) = delete;

void *operator new[](std::size_t count, const std::nothrow_t &tag) = 
delete;

void *operator new(std::size_t count, std::align_val_t al, const 
std::nothrow_t &) = delete;

void *operator new[](std::size_t count, std::align_val_t al,const 
std::nothrow_t &) = delete;

int main() {

  std::vector<int> vec;

  vec.push_back(123);
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  printf("vec[0] = %d\r\n", vec[0]);

  return 0;

}

The preceding example will fail with the following compiler message (among others):

/usr/include/c++/13/bits/new_allocator.h:143:59: error: use of deleted 
function 'void* operator new(std::size_t, std::align_val_t)'

  143 |             return static_cast<_Tp*>(_GLIBCXX_OPERATOR_NEW (__n * 
sizeof(_Tp),

By deleting new operators, we can make the compilation of a C++ program that is trying to use 

dynamic memory management fail. This is useful if we want to be sure our program is not using 

dynamic memory management.

Summary
C++ allows a great degree of flexibility. Resource-constrained embedded systems and safety-critical 

guidelines can impose some limitations on the usage of certain C++ features, such as exception 

handling, RTTI, and the usage of dynamic memory allocation by containers and other modules 

from the standard C++ library. C++ acknowledges those concerns and provides mechanisms for 

disabling unwanted features. In this chapter, we learned about different strategies for mitigating 

concerns of dynamic memory allocation by means of local allocators and overloading global new 

and delete operators.

The learning curve is steep but worth the effort, so let’s continue our journey of discovering C++ 

in embedded systems.

In the next chapter, we will explore the C++ ecosystem for embedded development.





3
Embedded C++ Ecosystem

At the heart of every embedded system sits a microcontroller. The transition from basic cores to 

more modern ones mirrors the evolution of technology. The microcontroller landscape is vast, 

ranging from cost-effective 8-bit cores and 16-bit cores to modern 32-bit Arm and RISC-V® 

based microcontrollers. This variety of architecture has impacted the development of tools and 

compilers. While some manufacturers have opted to focus on C support, many have recognized 

the importance of C++ and provided good support for C++ development within their toolchains.

As the embedded system is vast and it is impossible to cover all of the available architectures and 

vendors, we will focus on Arm® Cortex®-M as one of the dominant architectures for modern 

microcontrollers and Systems on a Chip (SoCs). We will go through the available development 

environments and toolchains that provide support for development in C++ for the Arm Cortex-M. 

We will also go through tools such as static analyzers, learn how to profile an embedded target, 

and cover methodologies such as unit testing.

In this chapter, we’re going to cover the following main topics:

•	 Compilers and development environments

•	 Static analyzers

•	 Unit testing

•	 Profiling
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard, 

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter03).

Compilers and development environments
The adoption of C++ in embedded systems was influenced by compiler support. While most 

compilers supported C, the support for C++ was slower. Nowadays, there is a variety of compilers 

and toolchains available for C++ depending on the target architecture and functional safety 

requirements. Support for 32-bit architecture such as Arm Cortex-M is generally good, but the 

level of support depends on the toolchain vendor and functional safety requirements.

Many vendors offer functional safety versions of their tools that include certified compilers 

according to the safety standards for different industries. Functional safety standards are designed 

to ensure that software operates correctly and safely, even in the event of hardware failures or 

operational errors. IEC 61508 is the international umbrella safety standard for functional safety, 

and the following are safety standards for some industries:

•	 ISO 26262: Automotive safety standard

•	 EN 50128: European railways safety standard

•	 IEC 62304: International standard for medical software

•	 IEC 60730-1: Automatic electrical control for household appliances

Functional safety requirements are one of the first items on our checklist when selecting a compiler 

for a new project. If they call for qualified compilers, then we are limited to commercial versions 

of compilers that provide qualified compilers according to the exact standard in question.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter03
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter03
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While many vendors providing tools for embedded development provide functional safety versions 

of their tools and compilers, there are also free development environments and open source 

compilers for embedded system development that can be used in non-critical applications.

Development environments pack different tools to make the development process seamless and 

allow you to focus on the development. These tools can also be used individually and tailored 

according to individual or organizational preferences. Tools used for embedded development, 

either individually or integrated into a development environment, are listed as follows:

•	 Code editor: This can be as basic as a text editor or a more advanced tool such as Vim 

or Visual Studio Code supporting plugins for features such as syntax highlighting, 

autocompletion, code navigation across different source files, and refactoring.

•	 Compiler and linker: These are used to transform code into object files and link them 

to executable and binary files that can be flashed to a target. Some of the most popular 

C++ compilers are GCC, Clang, Arm Compiler for Embedded, and IAR C/C++ Compiler.

•	 Debugger: It is used to flash and debug a target. Parts of the debugging system are a 

debugger probe and software that communicates with a probe to debug the connected 

target.

•	 Build system: Tools such as GNU Make and Ninja are used to control the process of 

compiling and linking. CMake and Bazel are used for build automation and dependency 

management.

•	 Static analysis tools: These are used to analyze source code. Depending on capability, they 

can detect some forms of undefined behavior such as out-of-bound access, uninitialized 

variables, null pointer dereferences, and so on. Dedicated static analysis tools can check 

whether the code is MISRA or AUTOSAR-compliant.

•	 Runtime profilers: These are a combination of target capabilities, software instrumentation, 

and debugger probes used to measure function execution time and analyze the performance 

of your software.

Most embedded integrated development environments (IDEs) provide the following capabilities:

•	 Project creation and organization

•	 Build automation

•	 Debugging
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Some development environments integrate more advanced features for code analysis, such as 

the following:

•	 Static analysis

•	 Profiling and performance analysis

We will cover some of the most used development environments and compilers in the industry 

on the next pages.

Arm Keil MDK and Arm Compiler for Embedded
Arm® Keil® MDK is a set of tools for embedded development on (mostly) Arm Cortex-M 

microcontrollers and it includes the following:

•	 Keil Studio, a set of extensions for VS Code

•	 Keil μVision, a legacy Windows®-based IDE

•	 Arm Compiler for Embedded, a C and C++ compiler

•	 Arm Virtual Hardware

Both Keil Studio and Keil μVision provide all the IDE features needed for embedded development, 

including project configuration for different targets, build, and debugging on target.

Keil μVision provides support for the integration of PC-Lint, a static C and C++ analyzer, while 

VS Code (Keil Studio) can be configured to use clang-tidy or cppcheck.

Keil μVision is packed with Keil Simulator, allowing running firmware on simulated targets on 

your PC, and it also has an integrated profiler as a part of the μVision debugger.

Arm Keil MDK comes with Arm Virtual Hardware Fixed Virtual Platforms, which is Arm’s cloud 

platform that allows you to run binaries on simulated targets providing infrastructure for CI/CD 

in a simulated environment.

There is a basic version of Keil MDK available for non-commercial use (Community), and two 

commercial versions (Essential and Professional), depending on the features available. Only the 

Professional commercial version comes with functional safety support and extended maintenance. 

Next, we will cover Arm Compiler for Embedded, a C and C++ compiler that comes with MDK. It 

also includes linker and standard libraries.
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Arm Compiler for Embedded is a C and C++ compiler provided by Arm. Arm also provides a 

functional safety (FuSa) version of the compiler that is certified according to IEC 61508, ISO 

26262, EN 50128, and IEC 62304 safety standards.

The FuSa version is available only in the highest edition of MDK – Professional.

Arm Compiler for Embedded consists of the following toolchain components:

•	 armclang, a low-level virtual machine (LLVM)-based compiler

•	 armlink, a linker that combines objects and libraries to produce an executable

•	 Arm C libraries

•	 Arm C++ libraries based on the LLVM libc++ project

Arm Compiler supports C++17 standard, while the latest version of Arm Compiler for Embedded 

FuSa 6.16 supports C++ 14. Even though we are in 2024 at the time of writing this book, the support 

for the latest version of the C++ standard is slow. After C++17, C++20 and C++23 were released.

Support of the latest C++ standard in commercial compilers is still rather slow, which makes the 

latest language features in these environments unavailable.

IAR C/C++ Compiler and IAR Embedded Workbench  
for Arm
IAR Embedded Workbench® is a development environment for Arm Cortex-M, Cortex-R, and 

Cortex-A cores (IAR stands for Ingenjörsfirma Anders Rundgren). It integrates the following tools:

•	 IDE, including a debugger and profiler

•	 IAR C/C++ Compiler

•	 IAR C-STAT®, a static analyzer

•	 IAR C-RUN®, a tool for runtime analysis

IAR Embedded Workbench is a well-rounded solution for the development of Arm Cortex-M 

cores. The IDE is packed with standard tools, such as a debugger, but also provides more advanced 

embedded tools, such as a profiler and running firmware in the simulator.

IAR offers C-STAT, a tool for static analysis that can run static analysis against safety coding 

standards such as MISRAC++2008.
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IAR also provides C-RUN, a tool for runtime analysis that covers heap checks, bounds checking, 

buffer overrun, integer overflow, and other runtime checks by instrumenting your code.

IAR C/C++ Compiler supports C++17 from 9.30.1. The FuSa version of IAR Embedded Workbench 

for Arm, version 9.50.3 (February 2024), also provides C++17 support.

IAR C/C++ Compiler and Arm Compiler for Embedded are commercial options for embedded 

development. Besides the support you can expect from a commercial project, the strength of these 

tools is that they provide safety-qualified versions for safety-critical projects.

Some microcontroller vendors provide their own versions of development environments, usually 

based on Eclipse®, providing additional support for their own products.

Vendor-supported IDEs and GCC
Alternatives to commercial development environments are vendor-supported environments, 

which are based mostly on Eclipse and GNU Compiler Collection (GCC) tools and GNU Project 

Debugger (GDB) for debugging. Examples are STM32CubeIDE by ST® and MCUXpresso by NXP®.

These tools are packed with code configurator UIs that can generate C code used for GPIO 

configuration, clock setup, and peripheral drivers’ initialization.

Some vendors, such as Nordic Semiconductor®, opted for VS Code as the basis of their IDE solution. 

They provide plugins for GPIO configuration and debugging. VS Code is a modern code editor that 

allows developers to use plugins such as IntelliSense for code completion, parameter information, 

syntax highlighting, and many others to enhance the development experience.

GCC
GCC is one of the most used C and C++ compilers in general. It is free software, and it is also the 

most popular compiler for non-critical applications that do not require a qualified compiler. 

However, even GCC can be qualified. The process of qualification includes compiling and running 

test programs and comparing outputs against expected results. All the issues that are found must 

be documented and a process must be put in place to mitigate them.

Besides the compiler, GCC also includes an assembler and linker, providing users with a so-called 

driver program (gcc for C and g++ for C++). When invoked, the driver program runs preprocessing, 

compilation, assembly, and linking. The following figure visualizes the GCC compilation process:



Chapter 3 61

Figure 3.1 – GCC compilation process

In Figure 3.1, we see what happens when GCC is used to compile a single file, main.cpp:

1.	 GCC first runs the preprocessor, adding all header files specified with the #include 

directive and expanding macros in the translation unit.

2.	 The result from the preprocessor stage is run through the compiler, generating assembly.

3.	 The output of the assembly stage is an object file.

4.	 Finally, the linker links the object file with C and C++ standard libraries and generates 

an ELF file.

The GCC driver program can be supplied with additional arguments to provide outputs from 

intermediate phases. To redirect preprocessor output to standard output, one can use the -E flag:

arm-none-eabi-g++ -E main.cpp
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The preceding command will result in a lengthy output if main.cpp includes the C Standard Input 

and Output (cstdio) library. You can write a simple hello world program and see it for yourself 

by running the preceding command, or you can use Compiler Explorer.

Compiler Explorer
Compiler Explorer (https://github.com/compiler-explorer/compiler-explorer) is an 

interactive online compiler that shows the assembly output of compiled C++, Rust, Go, and other 

code. You can try it online (https://godbolt.org/). It is a great tool that, by default, shows the 

assembly output and can be used to explore different language features with different compilers 

and compiler flags.

Let’s use Compiler Explorer to explore the GCC compilation process. We will select ARM GCC 

11.2.1 (none) as our compiler and provide it with an -E flag. ARM GCC 11.2.1 (none), or arm-

none-eabi-gcc, is the GCC used for Cortex-M architecture. In the following figure, we can see 

the preprocessor output in Compiler Explorer:

Figure 3.2 – Compiler Explorer: preprocessor output

In Figure 3.2, we can see that the preprocessor adds exactly 800 lines to our simple hello world 

example. The preprocessor goes through the cstdio file, resolves all preprocessor directives, and 

pastes the result in the translation unit, resulting in 808 lines of code.

https://github.com/compiler-explorer/compiler-explorer
https://godbolt.org/
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The default view of Compiler Explorer is the assembly output, which we can get by simply 

removing the –E flag from the previous example, as shown in the following figure:

Figure 3.3 – Compiler Explorer: assembly output

In Figure 3.3, we can see the generated assembly output of GCC’s compilation process. We can 

see that the optimization process replaced the printf function with puts. Also, we don’t see 

the body of the puts function because this function is part of the C standard library that we link 

against. The next steps of the process are as follows:

1.	 The assembler will generate object code from the assembly code.

2.	 The linker will link the generated object code with the C standard library that contains 

the puts implementation (among other functions).

In this simple example, we went through GCC’s compilation process, which will not result in the 

code that we can run on a microcontroller, as we also need to do the following steps:

1.	 Add clock and hardware peripheral initialization code.

2.	 Set compiler flags for the architecture and instruction set for our target.

3.	 Add a startup assembly script containing a reset handler and C and C++ runtime 

initialization.



Embedded C++ Ecosystem64

4.	 Add a linker script defining different memory regions for a target, including RAM and 

Flash regions.

5.	 Add instructions for the linker to link against specific C and C++ standard libraries.

The output from the last stage of the GCC compilation process, the linking stage, is an Executable 

and Linkable Format (ELF) file. The ELF file is converted into binary or hex format using the 

objdump tool, as binary and hex formats are usually used by the flashing process to be loaded on 

the target.

From version 10, GCC has an integrated static analyzer, which can be enabled with the –fanalyzer 

compiler flag.

Static analyzers
Static analyzers are tools that go through source code and detect potential issues with the code 

such as undefined behavior, or they check whether the code is compliant with a safety standard 

such as MISRA® or AUTOSAR®. Not all static analyzers have the same capabilities, and only 

commercial versions support safety standards checks. Some of the issues that can be detected 

with static analyzers are as follows:

•	 Use of uninitialized data

•	 Out-of-bounds array access

•	 Null pointers dereference

•	 Division by zero

•	 Use after delete, double delete, and other memory management issues

We can enable GCC’s static analyzer by providing the GCC driver program with the –fanalyzer 

flag. Let us take an example of a simple sum function that takes a std::array<int, 4> constant 

reference and returns the sum shown in the following example:

#include <array>

int sum(const std::array<int, 4> &arr) {

    int ret;

    for(int elem: arr) {

        ret += elem;

    }

    return ret;

}
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The issue with the preceding example is that we are not initializing the ret variable to zero. During 

the stack allocation of variables in the sum function, the value of the ret variable will be populated 

with anything on the allocated location, leading to undefined behavior. We can add the -fanalyzer 

flag in Compiler Explorer and open the compiler output, as shown in the following screenshot:

Figure 3.4 – Compiler Explorer: static analyzer, use of uninitialized value

In Figure 3.4, we can see compiler output in a new plane, which we enabled by clicking on Output 

(0/42). We can see that the static analyzer recognized that we were using an uninitialized variable 

and issued the warning. GCC, like many other compilers, can issue compiler warnings, and can 

also detect different issues with code, including uninitialized variables. We can enable regular 

compiler warnings using flags such as -Wall, -Wextra, -Wpedantic, but in this case, they wouldn’t 

catch uninitialized variables. 
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We can see this in the following screenshot:

Figure 3.5 – Compiler Explorer: GCC warnings, uninitialized value

In Figure 3.5, we can see that GCC didn’t issue a warning for uninitialized data using regular 

compiler warnings. Enabling a static analyzer using the –fanalyzer flag will help detect the 

issue, but also keep in mind that static analysis takes more time, which might be an issue with 

larger code bases. There is also a GCC flag, –Wuninitialized, which should generate a warning 

for uninitialized variables. In this particular example, it will generate a warning only if a program 

is compiled with an optimization flag different from 0 (e.g., -O2).

Different compilers have different capabilities, including detecting issues with code. If we were 

to compile this example using the clang compiler (switch the compiler to armv7-a clang 11.0.1 

in Compiler Explorer), we would see that the clang compiler would detect this uninitialized 

variable issue and emit a warning. Also, static analyzers have different capabilities, so it is a 

good practice to run your code through several static analyzers, as one may detect issues that 

the others can’t, and vice versa.

Here is another example of a static analyzer in action, detecting out-of-bounds access:
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Figure 3.6 – Compiler Explorer: static analyzer, out-of-bounds access

In Figure 3.6, we are trying to access the fifth element of an array that has four elements, which 

will result in undefined behavior. This was caught by the GCC’s static analyzer, which issued a 

descriptive warning. In GCC, warnings can be treated as errors that will result in failed compilation 

and no ELF file generated. To treat warnings as errors, just add the -Werror compiler flag to the 

GCC driver program invocation.

There are other commonly used static analyzers, most notably clang-tidy and cppcheck. clang-

tidy can be enabled in Compiler Explorer using the Add tool option. Both clang-tidy (https://

clang.llvm.org/extra/clang-tidy/) and cppcheck (https://cppcheck.sourceforge.io/) 

are easy to install and use, and as previously stated, it is usually a good idea to use several static 

analyzers to catch different issues with the code.

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
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Static analyzers are great for catching common programming errors and potential issues with 

your code or making sure that code is compliant according to a safety standard, but they don’t 

guarantee that the code does what it is supposed to do. To validate the actual functionality of 

our firmware, we can run manual tests on a target or we can use unit testing to write test cases 

for individual pieces of our code.

Unit testing
Unit testing is the process of testing units of code by using a test framework that provides 

infrastructure for setting up tests, running them, and reporting them. So, what is a unit of code? 

It depends on what we want to test; it can be a function or a software module, or we can reason 

about unit testing as testing a unit of work. What does the firmware need to do if a user presses a 

button, or what does it need to do if we receive a specific packet over a Bluetooth® Low Energy 

(BLE) connection?

Depending on the granularity of unit testing, we can test different components of firmware on 

the individual level and their interaction to ensure proper functionality. Unit tests test the units 

of code or units of work in isolation from other software components. This forces us to focus on 

the functionality of said units during the development and split the responsibilities between 

components more easily, leading to more robust software.

Most of the C++ testing frameworks are not well suited for running on small, embedded targets 

due to the resulting binary size, most notably, due to the usage of ostream from the standard 

library. This leaves us with the option to run our unit tests on the host machine instead of the 

embedded target. This is not to say that unit tests can’t be run on embedded targets. Running 

tests on a target takes more time, as all tests would need to be compiled for the target and flashed 

to it, and we’d need a report-catching mechanism on the host machine to read test results.

Running tests off the target on a host machine is a common practice. However, there are concerns 

about this approach, as tests are run on a different architecture where even data types can have 

different sizes. To address this, one can enforce the use of fixed-width data types (e.g., uint8_t 

or int32_t). Additionally, there may be differences between the compilers used for the host and 

target machines, so it is advisable to use the same versions of compilers. Running tests on a host 

machine is faster and easier, but the differences between architectures and setups can potentially 

have an impact on test results. There are manual target tests and system and integration tests 

that can discover potential issues with code functionality and serve as an additional layer of 

functionality validation.
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There are different testing frameworks for C++, and some of the most used are as follows:

•	 Google Test

•	 Catch2

•	 Boost.Test

•	 CppUTest

We can easily try them in Compiler Explorer by adding the relevant libraries. The first thing to 

do is to add an Execution Only pane, as shown in the following figure:

Figure 3.7 – Compiler Explorer: execution pane

In Figure 3.7, we added an execution pane and selected x86-64 gcc 13.2 as the compiler. Now, 

we need to add the Google Test library by clicking on the Libraries button in the execution pane. 

It will open a new window in which we can search for a library and include it, as shown in the 

following figure:

Figure 3.8 – Compiler Explorer: including a library
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In Figure 3.8, we search for the Google Test library and we add it to the project by selecting the 

version in the drop-down menu. Let’s see how we can test our generic ring buffer implementation 

from the first chapter using Google Test. The following is the code with ring buffer implementation 

and a couple of simple tests:

#include <array>

#include <cstdio>

#include "gtest/gtest.h"

template <class T, std::size_t N> struct ring_buffer {

  std::array<T, N> arr;

  std::size_t write_idx = 0;

  std::size_t read_idx = 0;

  std::size_t count = 0;

  void push(T t) {

    arr.at(write_idx) = t;

    write_idx = (write_idx + 1) % N;

    if (count < N) {

      count++;

    } else {

      read_idx = (read_idx + 1) % N;

    }

  }

  T pop() {

    if (count == 0) {

      return T{};

    }

    T value = arr.at(read_idx);

    read_idx = (read_idx + 1) % N;

    --count;

    return value;

  }

  bool is_empty() const {

      return count == 0;

  }

  std::size_t get_count() const {

      return count;



Chapter 3 71

  }

};

TEST(RingBufferInt, PushPop) {

    ring_buffer<int, 2> rb;

    rb.push(1);

    rb.push(2);

    EXPECT_EQ(rb.pop(), 1);

    EXPECT_EQ(rb.pop(), 2);

}

TEST(RingBufferInt, GetCount) {

    ring_buffer<int, 20> rb;

    for(int i = 0; i < 50; i++) {

        rb.push(i);

    }

    EXPECT_EQ(rb.get_count(), 20);

    for(int i = 0; i < 10; i++) {

        rb.pop();

    }

    EXPECT_EQ(rb.get_count(), 10);

}

int main() {

  testing::InitGoogleTest();

  return RUN_ALL_TESTS();

}

In the preceding example, the ring buffer implementation is the same as in the first chapter with 

the addition of the get_count method, which returns the number of elements currently held by 

the buffer. We defined a test suite, RingBufferInt, using the TEST macro. We specified two tests 

named PushPop and GetCount.

In the PushPop test, we are testing the push and pop functionality of the ring buffer, making sure 

that pop will return pushed values in the correct order using the EXPECT_EQ macro.
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In the GetCount test, we are checking whether the number of elements held by the buffer matches 

the intended functionality using the following scenario:

1.	 We first push 50 values to the buffer, which can hold a maximum of 20 values, making 

sure that get_count will return 20.

2.	 We then pop 10 values from the buffer and check whether the count will be equal to 10.

Running the preceding program will result in Google Test generating a report on standard output, 

as in the following figure:

Figure 3.9 – Compiler Explorer: Google Test execution

In Figure 3.9, we see the results of our tests in the execution pane. The TEST macro will ensure 

that tests are automatically registered in the framework so we don’t need to add them manually. 

This allows us to focus on writing tests utilizing the infrastructure provided by the framework. 

Google Test offers a lot more, and this example is just a glimpse into its capabilities.

Writing unit tests makes us think about how our code interacts with other software modules 

in the system. By focusing on units of code, we can write code that is loosely coupled, making 

our software more flexible and robust. Unit tests are crucial for development techniques such 

as Test-Driven Development (TDD), which requires us to write tests before we write the code. 

After we write a unit test, we write the actual code just to pass the test, and then we add more 

tests, refactor the implementation, and iterate on the process.
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Unit tests are a powerful tool for validating the functionality of our code, whether we run them on 

the target or the host platform. Still, they don’t tell us a lot about the performance of our firmware. 

For that, we need to run the production firmware on the target and measure the performance 

using profiler tools.

Profiling
Running code on the target and profiling is the best way to ensure the Worst-Case Execution 

Time (WCET) for critical functionality and make necessary optimizations if needed.

The challenge with profiling is that it is an intrusive operation, as the code source needs to be 

modified or instrumented to enable traces that can tell us more about what is happening internally 

on the target.

Profiling depends on target capabilities. Some cores have integrated units for tracing, as we saw 

in the previous chapter, providing profiling that is minimally invasive. Also, some targets have 

special interfaces that allow high-speed trace data transfer using advanced debugging and tracing 

probes connected to the host machine. We can see an example of profiling infrastructure used 

for some Cortex-M targets in the following figure:

Figure 3.10 – Arm target connected to host machine over a debug probe



Embedded C++ Ecosystem74

In Figure 3.10, we can see an Arm target connected over a debugging probe to a host machine. 

Profiling, or trace data flow, can be described through the next steps:

1.	 A Program Counter (PC) is sampled using DWT and generates an event.

2.	 ITM sends events generated by DWT and instrumented code over Single Wire Output 

SWO to a debugging probe.

3.	 The debugging probe transfers trace data to capturing software on the host machine 

over USB.

4.	 Capturing software is usually a part of a larger software package that can analyze and 

visualize captured received data.

In order to have precise information about function execution times, the source code needs to 

be instrumented by adding instructions that will generate trace data. We saw how this can be 

achieved in the previous chapter using GCC’s compiler features for adding instructions to the 

entry and exit of every function. This data can be sent using ITM to profiler software running on 

the host machine. This approach has good accuracy, but by adding instructions to code, we are 

degrading performances for the sake of measurement.

PC sampling can be less intrusive than code instrumentation, but it is less accurate and can serve 

only to detect bottlenecks in the firmware without precise timing information.

Some Arm cores have an integrated Embedded Trace Macrocell (ETM). ETM records instruction 

execution, generates trace data, and sends it to the connected probe. With the instruction trace 

data, a profiler can measure the execution time of functions accurately and create a call graph of 

each function call, the same as code instrumentation. ETM enables code profiling without the 

instrumentation cost.

Code instrumentation is still a very common approach as it depends less on the target’s integrated 

tracing capabilities. SEGGER’s SystemView is an example of a profiler for embedded targets. As 

we briefly discussed in the previous chapter, we need to use SEGGER’s SystemView and RTT 

libraries on the target to enable trace generation. In the following, you can see data generated 

by SystemView:
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Figure 3.11 – SystemView

In Figure 3.11, we see the names of functions from instrumented firmware, including minimum and 

maximum running time. Profiling code can help with the optimization of time-critical sections 

of firmware, enabling us to ensure the system’s timing requirements.

Summary
In this chapter, we discovered the available tools for C++ development in the Embedded domain. 

There is a variety of available development environments and compilers. While commercial 

solutions come with guaranteed support and have functional safety editions of their tools, free 

tools are also common and can even be qualified if needed.

Static analyzers can help in avoiding common programming issues and ensure safety guidelines 

compliances. By using unit tests, we can validate the functionality of our firmware, and profilers 

can help with detecting bottlenecks, measuring WCET, and ensuring timing requirements.

In the next chapter, we will create a development environment for C++ for embedded applications 

using selected free tools.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems




4
Setting Up the Development 
Environment for a C++ 
Embedded Project

In the previous chapter, we explored the embedded tools ecosystem and reviewed the most widely 

used tools in the industry. Now, we’ll set requirements for a modern embedded development 

environment and each of its components. Then, we’ll set up our development environment for 

running the examples that will be provided in the remainder of this book.

One of the major selling points of integrated environments is their ease of use. They provide you 

with everything you need through simple installation steps. Customized environments, on the 

other hand, require all components to be installed individually, including all the dependencies 

for each component. It’s important to ensure reproducible builds and a reliable debugging 

environment, so containerizing customized environments is of great importance.

You’ll be provided with a Docker container for the development environment that we’ll be using 

in this book, but we’ll analyze all of its components individually. Understanding the tools that 

we use in our daily work is necessary to comprehend and control the processes behind them.
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In this chapter, we’re going to cover the following main topics:

•	 Requirements for a modern software development environment

•	 Containerized development environment

•	 Containerized development environment and Visual Studio Code

Technical requirements
For this chapter, you will need to have Docker installed (https://www.docker.com/). Please 

follow the installation instructions provided for your specific operating system. This chapter will 

guide you through the basic steps for downloading and running a container with a preconfigured 

development environment. For more advanced Docker usage, please refer to the official Docker 

documentation available on their website.

The code from this chapter is available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter04).

Requirements for a modern software development 
environment
Firmware development is no different than any other form of software development and the 

tools we use are crucial for effective work. To make this book and the examples accessible as 

much as possible, the first requirement we’ll set is to use free tools. The compiler is the basis and 

the most important part of every development requirement, so let’s define the requirements and 

choose a compiler for our needs.

Compiler
Since we’re exploring modern C++, we’ll require compiler support for the C++23 standard. The 

latest version of ARM GNU Toolchain (based on GCC) is 13.2; it supports C++23 and is free. It’s 

also the most commonly used free compiler toolchain for ARM development, making it a perfect 

fit for our compiler.

ARM GNU Toolchain comes with C and C++ compilers, GNU Debugger (GDB), which we’ll use 

for debugging, and other useful tools, such as objcopy, objdump, size, and more, and can be 

downloaded from https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads. 

The architecture that we need for Arm Cortex-M is arm-none-eabi. 

https://www.docker.com/).
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter04).
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter04).
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads.
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ARM GNU Toolchain for arm-none-eabi is available for all common host architectures:

•	 GNU/Linux x86_64 and AArch64 host architectures

•	 Windows x86 host architecture only (compatible with x86_64)

•	 macOS x86_64 and Apple silicon

Compiling a single file or few files is as simple as running a few commands in the terminal, but 

building even the simplest embedded projects involves the following steps:

1.	 Compile all C and C++ source files, the file that contains the main function, and at least 

several files from Hardware Abstraction Layer (HAL). You’ll learn more about HAL in 

Chapter 12.

2.	 Set up compiler include paths.

3.	 Set up compiler C and C++ flags.

4.	 Set up compiler define macros.

5.	 Compile the startup assembly script.

6.	 Set up linker options, including the linker script, static libraries, CPU architecture and 

instruction set, and standard library options.

Upon doing this, we must convert the ELF file into other formats that are commonly used by 

flashing programs, such as bin and hex.

Running all of these tasks manually in the terminal would be a tedious process, so the next 

requirement for our development environment is build automation. The first candidate for build 

automation is the make utility. It’s a common tool that’s used for automating huge amounts of 

software projects across different industries. It would be a good fit for the task, but it’s an old 

tool with odd syntax. However, we can use CMake, a more flexible tool with more modern syntax 

that can generate Makefiles for us.

Build automation
CMake isn’t an actual build automation tool, but it generates files for other automation tools, such 

as the make utility. It’s cross-platform, free, and open source software for the build automation 

process, which involves testing, packaging, and installing software. It does so by using a compiler-

independent method.
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We’ll use CMake to help us generate targets for the make utility that will do the following:

•	 Configure source files, including paths and linker settings to build ELF files

•	 Convert ELF files into hex and binary formats

•	 Start the simulator and load it with the generated ELF file

We’ll use build automation not only to build the firmware but also to start the simulator that 

will run the firmware.

Simulator
To make this book accessible to a wide audience, we’ll be using a simulator to run the examples 

that have been compiled for the ARM Cortex M target. Renode (https://github.com/renode/

renode) is an open source simulating framework with good support for ARM targets.

Renode allows you to run simulations with multiple targets and simulate wireless and wired 

connections between them. We’ll use it in a simple scenario that involves running simulations 

on a single target. Renode can also start a GDB server, allowing you to connect to it and debug 

the target.

We’ll integrate simulation execution and debugging, as well as compiler and build automation, 

using the highly configurable Visual Studio Code.

Code editor
Visual Studio Code is a modern and flexible code editor. It provides us with all the extensions we 

need to integrate all our tools into a single environment. We’ll install the following extensions 

in Visual Studio Code:

•	 C/C++: This extension provides syntax highlighting, code autocompletion, and code 

navigation

•	 Cortex-Debug: This extension allows debugging to be performed via GDB

•	 CS 128 Clang-Tidy: This extension integrates clang-tidy into Visual Studio Code

•	 Dev Containers: This extension attaches to running a container and uses it for development 

purposes

We’ll base our development environment on a Docker container. Visual Studio Code will attach 

to that container and use it.

https://github.com/renode/renode)
https://github.com/renode/renode)
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Containerized development environment
The Visual Studio Code Dev Containers extension allows Visual Studio Code to attach to a running 

Docker container and use all the tools inside it that have been installed. To use this feature, we 

need to build a container.

We’ll use Docker to build a container with the following tools:

•	 ARM GNU Toolchain version 13.2

•	 CMake and the make utility

•	 Renode version 1.14

Make sure you’ve installed Docker on your host machine by following the instructions provided 

on the official website (https://docs.docker.com).

You can find the Dockerfile that will be used to build the container in this book’s GitHub repository 

(https://github.com/PacktPublishing/Cpp-in-Embedded-Systems), in the Chapter04 folder.

There’s also an image that you can download from Docker Hub (https://hub.docker.com/). 

You can pull it using the following command:

$ docker pull mahmutbegovic/cpp_in_embedded_systems:latest

Make sure that the Docker daemon has been started by following the instructions for your 

platform; they’re available on the official website. After downloading the image, start Docker 

using the following command:

$ docker run -d -it --name dev_env mahmutbegovic/cpp_in_embedded_systems

This will start the Docker container in detached and interactive mode. If you’ve already created A 

Docker container using the docker run command, you need to start it by running the following 

command:

$ docker start dev_env

To access the bash of the started container, we can use the following command:

$ docker exec -it dev_env /bin/bash

https://docs.docker.com)
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems)
https://hub.docker.com/).
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As shown in the following screenshot, we can run various commands to ensure the compiler, 

debugger, simulator, and other tools have been installed in the container:

Figure 4.1 – Development environment container bash

Figure 4.1 shows the expected outputs from the commands we used to check the versions of the 

tools that we’ve installed.

We can use the running container as a self-contained environment. Let’s start by cloning the 

project GitHub repository (https://github.com/PacktPublishing/Cpp-in-Embedded-Systems):

$ git clone https://github.com/PacktPublishing/Cpp-in-Embedded-Systems.git

Once you’ve done this, go to the Chapter04/bare folder. This folder contains the Hello, World! 

example firmware for STM32F072 that we’ll run in Renode. The project is organized into the 

following folders:

•	 app: Contains the business layer code, including main.cpp

•	 hal: Contains the HAL C++ code

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems):
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•	 platform: Contains platform-specific code, including the ST-provided HAL layer in C and 

the CMSIS, startup, and linker scripts

•	 renode_scripts: Contains Renode simulator scripts

In the project folder, you’ll also see CMakeLists.txt, a CMake file that we’ll use to specify how 

the firmware is built. Let’s learn how to use CMake with the help of an example.

Building the Hello, World! program using CMake
We can use CMake to specify a toolchain, source files, compiler include paths, and compiler flags. 

The first thing we must do in a CMake file is specify the CMake version that’s in use, as shown 

in the following line:

cmake_minimum_required(VERSION 3.13)

CMake is a powerful tool that allows us to write highly flexible build files. We can write toolchain 

details in separate files and include them in the main project file, which would allow us to reuse 

them for different architectures. However, in our example, we have the toolchain details in the 

main CMake file. The following lines specify various toolchain components:

set(CMAKE_C_COMPILER “arm-none-eabi-gcc”)

set(CMAKE_CXX_COMPILER “arm-none-eabi-g++”)

set(CMAKE_ASM_COMPILER “arm-none-eabi-gcc”)

Using the CMAKE_C_COMPILER, CMAKE_CXX_COMPILER, and CMAKE_ASM_COMPILER CMake variables, 

we specify paths for the C, C++, and assembler compilers, respectively. We need to use all three 

since our project contains ST-provided HAL written in C, our C++ code, and an assembly startup 

script.

Now, we must specify various compiler options and preprocessor macros by running the following 

lines in our CMakeLists.txt file:

set(CDEFS “-DUSE_HAL_DRIVER -DSTM32F072xB”)

set(MCU “-mcpu=cortex-m0 -mthumb”)

set(COMMON_FLAGS “${MCU} ${CDEFS}  -fdata-sections -ffunction-sections  
-Wno-address-of-packed-member -Wall -Wextra -Wno-unused-parameter”)

set(CMAKE_C_FLAGS “${COMMON_FLAGS}”)

set(CMAKE_CXX_FLAGS “${COMMON_FLAGS} -Wno-register -fno-exceptions -fno-

rtti -fno-threadsafe-statics”)
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Here, we set the USE_HAL_DRIVER and STM32F072xB compile-time macros, which are used by ST’s 

HAL. Then, we set some compiler flags that are used for both C and C++ files:

•	 -mcpu=cortex-m0 and -mthumb: Architecture-specific flags.

•	 -fdata-sections: This option tells the compiler to place data items in their own sections 

in the resulting objectfile. This can be useful for optimization purposes (removing unused 

sections).

•	 -ffunction-sections: Similar to -fdata-sections, but for functions. Each function gets 

its own section, allowing the linker to potentially discard unused functions.

•	 -Wno-address-of-packed-member: Suppresses warnings related to taking the address of 

a packed member of a structure.

•	 -Wall: Enables all the common warning messages recommended for normal operation.

•	 -Wextra: Enables extra warning flags that aren’t enabled by -Wall.

•	 -Wno-unused-parameter: Disables warnings about unused parameters in functions.

Then, we set the C++-specific compiler flags:

•	 -Wno-register: Disables warnings about the use of the register keyword, which is 

deprecated in modern C++ but might be used in legacy code

•	 -fno-exceptions: Disables support for exceptions in C++

•	 -fno-rtti: Disables Run-Time Type Information (RTTI)

•	 -fno-threadsafe-statics: Prevents the compiler from using extra code to ensure that 

static local variables are initialized in a thread-safe way

The next part of our CMake file is project-specific: we must declare a new project, give it a name, 

enable the languages we want to use, and specify a CMake target, source files, and linker options.

This is our basic setup compiler setup for a C++ (mixed with C) project:

project(bare VERSION 1.0.6)

enable_language(C CXX ASM)

set(CMAKE_CXX_STANDARD 17)

set(CMAKE_CXX_STANDARD_REQUIRED True)

# global include directories

include_directories(

  ${CMAKE_SOURCE_DIR}/platform/inc

  ${CMAKE_SOURCE_DIR}/platform/CMSIS/Device/ST/STM32F0xx/Include
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  ${CMAKE_SOURCE_DIR}/platform/CMSIS/Include

  ${CMAKE_SOURCE_DIR}/platform/STM32F0xx_HAL_Driver/Inc

  ${CMAKE_SOURCE_DIR}/app/inc

  ${CMAKE_SOURCE_DIR}/hal/uart/inc

  ${CMAKE_SOURCE_DIR}/hal/inc

  )

set(EXECUTABLE ${PROJECT_NAME}.elf)

add_executable(

  ${EXECUTABLE}

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c

  platform/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c

  platform/startup_stm32f072xb.s

  platform/src/stm32f0xx_hal_msp.c

  platform/src/stm32f0xx_it.c

  platform/src/system_stm32f0xx.c

  app/src/main.cpp

  hal/uart/src/uart_stm32.cpp

  )

In the preceding CMake code, we have TARGET. This represents an entity that’s being built by a 

CMake, be it the entire firmware (an executable file) or a static library. In our case, the target is the 

entire firmware, and the target name is created using the project name and .elf suffix, meaning 

CMake will create a bare.elf target for us.

The remaining step is to specify linker options using the following lines:

target_link_options(

  ${EXECUTABLE}

  PUBLIC

  -T${CMAKE_SOURCE_DIR}/platform/STM32F072C8Tx_FLASH.ld

  -mcpu=cortex-m0

  -mthumb

  -specs=nano.specs

  -Wl,--no-warn-rwx-segments

  -Wl,-Map=${PROJECT_NAME}.map,--cref

  -Wl,--gc-sections)
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Here, we specify the linker script to be used – that is, STM32F072C8Tx_FLASH.ld – set a target 

CPU and instruction set, and specify the new-lib nano system library and map file to be created.

Now, let’s build the firmware using CMake.

Building a firmware using CMake
Here, we’ll create a build folder and configure the build in Debug mode using the following 

commands:

$ cd Cpp-in-Embedded-Systems/Chapter04/bare/

$ mkdir build && cd build

$ cmake .. -DCMAKE_BUILD_TYPE=Debug

If you list the files in the build folder using ls –l, you’ll see that CMake generated Makefile, 

which is used to build the firmware. Let’s run it to build the firmware:

$ make -j4

You should see the following output:

Figure 4.2 – Building the firmware

Figure 4.2 shows the output of building the firmware. We can run the resulting ELF file, bare.elf, 

in Renode using the following command:

$ make run_in_renode
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This will start the simulator using the stm32f072.resc Renode script from the renode_scripts 

folder. The script will create a new Renode machine using the STM32F072 target architecture and 

load it with the bare.elf file. We’ll see the following as part of the terminal output:

Figure 4.3 – Running firmware in Renode

Figure 4.3 shows the output of the simulation running in Renode in console mode with GUI 

disabled. To stop the simulation, type q and press Enter.

Keep in mind that if you stop or reset the Docker container, all the changes, including the cloned 

GitHub repository, will be lost. To prevent this from happening, you need to save them using the 

docker commit command.

At this point, we have a pretty development environment contained in a Docker container. However, 

to fully utilize it, we must connect it to Visual Studio Code.

Containerized development environment and Visual 
Studio Code
To start, install Visual Studio Code (https://code.visualstudio.com/). Once you’ve done this, 

go to Extensions and search for and install the following extensions:

•	 C/C++

•	 Cortex-Debug

•	 CS 128 Clang-Tidy

•	 Dev Containers

https://code.visualstudio.com/)
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Once you’ve done this, open View| Command Palette (Ctrl + Shift + P), find Dev Containers: 

Attach to Running Container, and select dev_env. This should open a new Visual Studio Code 

window where the container’s name is in the bottom left bar:

Figure 4.4 – Visual Studio Code attached to a running container

Figure 4.4 shows that Visual Studio Code was successfully attached to the running container. 

Now, let’s open the project folder at /workspace/Cpp-in-Embedded-Systems/Chapter04/bare. 

Open main.cpp in the EXPLORER view and set a breakpoint on line 23, as shown in the following 

screenshot:

Figure 4.5 – Setting a breakpoint in Visual Studio Code
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After setting a breakpoint, as shown in Figure 4.5, select Run| Start Debugging (F5). This will 

do the following:

•	 Configure the project in debug mode

•	 Start the simulator and load ELF

•	 Connect the GDB client to the GDB server running in the simulator

•	 Allow you to debug the target running in the simulator

If everything has been set up correctly, the program flow will stop on line 23, and you’ll see the 

following output:

Figure 4.6 – Visual Studio Code program flow

Figure 4.6 shows that the program flow stopped on line 23. We can switch to the TERMINAL 

view to see the output from Renode. Renode is in console mode, and it will also display UART. 

Let’s switch to the TERMINAL view and hit Continue (F5). You should see the following output:
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Figure 4.7 – Visual Studio Code Renode output

In Figure 4.7, we can see the Renode output in Visual Studio Code’s TERMINAL view. To be able 

to debug assembly files, we need to do the following in Visual Studio Code:

1.	 Go to File|Preferences|Settings.

2.	 Search for Allow Breakpoints Everywhere and select the relevant checkbox.

Now, we can set a breakpoint in platform/startup_stm32f072xb.s on line 87, stop the debugging 

session, and run it again. The program flow should stop, as shown here:

Figure 4.8 – Visual Studio Code assembly debugging
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In Figure 4.8, we can see that the program flow executes the SystemInit function on line 87 of 

the assembly startup script, before the main function. If we use Step Into (F11), the program flow 

will enter the SystemInit function and Visual Studio Code will open platform/src/system_

stm32f0xx.c file. If you keep moving using Step Over (F10), you’ll eventually enter the main 

function. This shows us that main isn’t the first function to be called.

Note that Reset_Handler from startup_stm32f072xb.s is the entry point of the firmware. This 

is defined in the linker script (platform/STM32F072C8Tx_FLASH.ld). It does the following:

•	 Initializes the stack pointer: It sets the initial stack pointer from the end of the stack 

(_estack).

•	 Copies data: It copies the initialization values from flash memory to SRAM for the data 

section, which ensures that initialized global/static variables are set up correctly.

•	 Zeroes BSS: It clears the BSS section by setting it to zero, which is required for uninitialized 

global/static variables.

•	 Calls SystemInit: The SystemInit function is used to set the default system clock (system 

clock source, PLL multiplier and divider factors, AHB/APBx prescalers, and flash settings).

•	 Calls __libc_init_array: The __libc_init_array function is used to initialize the static 

constructors in a C++ program or to run initialization functions in C programs.

•	 Calls main: This operation concludes the activities of the startup script and transfers 

program flow to the main function.

With our modern development environment now fully set up, we’re ready to dive into learning 

C++ for embedded systems. The Renode simulator allows us to run, test, and debug our firmware 

efficiently, eliminating the need for physical hardware in the initial stages of development. This 

provides a flexible and efficient solution for embedded system learning and testing.

Summary
In this chapter, we defined the components of our development environment for C++ in embedded 

systems. We went through all of its components using a Docker container, which we connected 

to Visual Studio Code to enable a seamless development experience and debugging.

We also set up compiler flags using CMake, ran the firmware using the Renode simulator, and 

learned how to set up our C and C++ runtime environment by going through the relevant assembly 

startup script using a debugger.

In the next chapter, we’ll use the development environment we created in this chapter to learn 

more about classes in C++.





Part 2
C++ Fundamentals

After the introduction to C++ in embedded development, the book shifts focus to covering C++ 

fundamentals for newcomers and readers with limited prior experience. This part delves into core 

language features such as classes, including inheritance and runtime polymorphism, along with 

other fundamental concepts. It also explores the various error handling mechanisms available 

in C++, including the use of exceptions.

This part has the following chapters:

•	 Chapter 5, Classes – Building Blocks of C++ Applications

•	 Chapter 6, Beyond Classes – Fundamental C++ Concepts

•	 Chapter 7, Strengthening Firmware – Practical C++ Error Handling Methods





5
Classes – Building Blocks of 
C++ Applications

Classes in C++ are means of organizing code into logical units. They allow us to structure data 

and functions that perform operations on that data in blueprints. These blueprints can be used to 

build instances of the classes, known as objects. We can initialize objects with data, manipulate 

them by calling functions or methods on them, store them in containers, or pass their references 

to objects of other classes to make the interaction between different parts of a system.

Classes are the basic building blocks of C++ applications. They help us organize code in units with 

isolated responsibility reflecting dependencies and interactions with other parts of the system. 

They can be combined or extended, allowing us to reuse their functionality and add additional 

capabilities. We use them to make abstractions of different parts of an embedded system, including 

low-level components such as Universal Asynchronous Receiver/Transmitter (UART) drivers 

and libraries or business logic components such as a cellular modem library.

The goal of this chapter is to delve into C++ classes and learn how we can use them to write better 

code. In this chapter, we’re going to cover the following main topics: 

•	 Encapsulation

•	 Storage duration and initialization

•	 Inheritance and dynamic polymorphism
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using a lot of modern C++ features make sure to select C++23 standard, 

by adding -std=c++23 in compiler options box.

The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter05).

Encapsulation
Encapsulation is a programming concept that organizes code into units that contain both data 

and functions that operate on that data. It is not strictly related to Object-Oriented Programming 

(OOP) and is often used in other programming paradigms. Encapsulation allows us to decouple 

code into units with single responsibilities, making the code easier to reason about, improving 

readability, and facilitating maintenance.

In terms of OOP, encapsulation can also refer to hiding an object’s members or restricting access 

to these members from the outside. In C++, this can be achieved using access specifiers. C++ has 

the following specifiers:

•	 Public

•	 Private

•	 Protected

Public and private are the most commonly used specifiers. They give us the ability to control 

the interface of the class, that is, to control which class members are available to the users of a 

class. The following example demonstrates how to define a class with public and private access 

sections, demonstrating the concept of encapsulation:

#include <cstdint>

class uart {

public:

    uart(std::uint32_t baud = 9600): baudrate_(baud) {}

    void init() {

        write_brr(calculate_uartdiv());

    }

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter05)
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter05)
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private:

    std::uint32_t baudrate_;

    std::uint8_t calculate_uartdiv() {

        return baudrate_ / 32000;

    }

    void write_brr(std::uint8_t) {}

};

int main () {

    uart uart1(115200);

    uart1.init();

    return 0;

}

In this example, the uart class has public and private access sections. Let’s go through the code 

step by step:

•	 The public section includes a constructor that initializes the baudrate_ private member 

variable

•	 We also have an init method in the public section, in which we write a value to a Bit Rate 

Register (BRR), which is specific to the STM32 platform, using the write_brr private 

method

•	 The value written to the BRR register is calculated in the calculate_uartdiv private 

method

As we can see, methods with a public access specifier within the uart class can use private member 

variables and methods. However, if we tried to use write_brr on the uart1 object, as in uart1.

write_brr(5), the compilation of the program would fail.

The private access specifier allows us to hide methods and data from the user of our class (in this 

case, the main function). This helps us define a clear interface for our classes in C++. By controlling 

which methods a user of the class can use, we are not only protecting the class but also the user 

from unwanted behavior.

This example serves the purpose of explaining access specifiers in C++, but let’s also use it to 

explain the init method. Why do we need it if we have a constructor?
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The purpose of init is to allow us to fully control the initialization of hardware. The object may 

also be constructed as a global or static variable. The initialization of static and global objects is 

done before reaching the main function and initializing hardware. That is why some kind of init 

method is common in classes in embedded projects. Using it, we can ensure that all hardware 

peripherals are initialized in the correct order.

The default access specifier for classes in C++ is private, so we could write the definition of the 

uart class from the previous example as follows:

class uart {

    std::uint32_t baudrate_;

    std::uint8_t calculate_uartdiv();

    void write_brr(std::uint8_t);

public:

    uart(std::uint32_t baud = 9600);

    void init();

};

We chose to explicitly define the private access section. We put it after the public section, as 

publicly accessible members are the interface for our class, and when you read code and a class 

definition, the first thing you want to see is the interface. You want to see how to interact with 

the class and which methods are part of the public interface that you can use.

The only data member we have in this example is baudrate_. It is private, and the only option 

for a user of the uart class to set it up is through the constructor. It is a common practice for data 

members that we want to expose to the public to define setter and getter methods.

Setters and getters
In the uart class, we could define setters and getters for baudrate_ members as follows:

    std::uint32_t get_baudrate() const{

        return baudrate_;

    }

    void set_baudrate(baudrate) {

        baudrate_ = baudrate;

    }
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Now, this would allow us to set and get the baudrate value from the public interface, but these 

trivial setters and getters do not add any value to our interface. They are just exposing the baudrate_ 

member. It would be the same as if we put it under the public access specifier. Setters and getters 

should serve a clear purpose. For example, a setter can include validation logic, as follows:

    void set_baudrate(baudrate) {

        if (baudrate <= c_max_baudrate) {

            baudrate_ = baudrate;

        } else {

            baudrate = c_max_baudrate;

        }

    }

In the modified setter, we are making a sanity check of the value to be set and setting the private 

member only if it makes sense to do so, else setting it to the maximum baudrate (c_max_baudrate) 

supported in our system. This is just an example; it probably doesn’t make sense to change the 

baudrate after the UART initialization.

Exposing data members through setters and getters in some sense breaks encapsulation. The idea 

of encapsulation is to hide the implementation details, and data members are implementation 

details. Therefore, setters and especially getters should be used sparingly and only when they 

serve a meaningful purpose.

We can use classes in C++ to encapsulate only functionality, without data, or data that is commonly 

shared with all users of a class. For that, we can use static methods.

Static methods
Static methods are C++ methods declared with static keywords, and they are accessible without 

object instantiation. In the uart class example, besides the constructor, we have the init method, 

which is part of the public interface. We use it by calling this method on an object we previously 

created using a single argument constructor by providing it with the baudrate. We could also 

design the uart class as a type that has all static methods and use it as follows:

#include <cstdint>

class uart {

public:

    static void init(std::uint32_t baudrate) {

        write_brr(calculate_uartdiv(baudrate));
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    }

private:

    static std::uint8_t calculate_uartdiv(std::uint32_t baudrate) {

        return baudrate / 32000;

    }

    static void write_brr(std::uint8_t) {}

};

int main () {

    uart::init(115200);

    return 0;

}

As you can see, we removed the single argument constructor and declared all methods as static. We 

also removed the baudrate_ private data member and passed it directly from the init method to 

the calculate_uartdiv method. We now have a type that we can use without object instantiation. 

We call the init method by using the class name followed by a double colon and the method name, 

as shown in the main function. It is worth noting that static methods can only use static data 

members and other static functions from a class as non-static members require the instantiation 

of an object.

We can group functions in C++ in a common unit by using namespaces. However, grouping them 

into a type is useful as we can pass types as template arguments. We will discuss namespaces 

and templates later in this book to better understand the benefits of this approach. Namespaces 

will be discussed in Chapter 6 and templates in Chapter 8.

In C++, we can also use the struct keyword to define a type. The default access for struct members 

is public. Historically, structs were used for compatibility with C, so one could write a header 

file for a library that is used in both C and C++ programs. In this case, the struct we would share 

between C and C++ programs could only have common data types and couldn’t have methods 

as members.

Structs
Structs are commonly used in C++ for types that only have data members that we want to make 

publicly available to users. They are mostly identical to classes, with a difference being in the 

default access level, which is public for structs. 
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Here is an example of a struct that only has data members:

struct accelerometer_data {

    std::uint32_t x;

    std::uint32_t y;

    std::uint32_t z;

};

accelerometer_data could be produced by a sensor class, stored in a ring_buffer class, and 

consumed by a sensor_fusion class. The members of the accelerometer_data class are values 

from the x, y, and z axes, and they are publicly available to users of this class.

In this case, we use the accelerometer_data struct only as a data holder, and we implement the 

behavior related to this data in other places. This is just an example. Structuring data in simple 

structs versus using classes with data and complex behavior is a design choice and it depends 

on the exact application.

Structs are also used to group functions into types. They are usually all declared as static and 

made publicly available to users. Using a struct instead of a class is convenient in this use case 

as the default access specifier is public and it also reflects our intent as a struct is usually used 

when all members are made public.

Besides the public and private access specifiers, there is also the protected specifier in C++. The 

protected specifier is related to inheritance and will be explained later in this chapter.

Let us now move on to constructors and the initialization of variables and objects in C++. Object 

initialization is an important task and failing to do it properly can cause problems in programs. 

We will discuss different options for object initialization and analyze potential pitfalls and how 

to avoid them.

Storage duration and initialization
C++ objects with automatic storage duration are initialized upon declaration and destroyed 

when exiting the variable scope. Objects can also have a static storage duration. Data members 

of objects can also have static storage specifiers, and there are rules for the initialization of such 

members. We will first go through non-static member initialization.
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Non-static member initialization
There are different ways to initialize non-static class members. The first thing that comes to 

mind when we discuss initialization and C++ is constructors. While constructors are powerful 

C++ features that allow us to have great control over the initialization, let us start with default 

member initializers.

Default member initializers
As of C++11, it is possible to set a default value for a member directly in a class definition, as follows:

class my_class{

    int a = 4;

    int *ptr = nullptr;

}

This simple code snippet would fail to compile if we were to compile it with any pre-C++11 

standard. The default member initializers allow us to set a default value for class members in a 

class definition, which improves readability and saves us from setting the same member variable 

if we have multiple constructors. This is particularly useful for setting default values for pointers.

If we didn’t use the default initializer for ptr, it would be loaded with some random value from 

memory. Dereferencing such a pointer would result in reading from or writing to a random location, 

potentially leading to a serious fault. This hypothetical situation would be detected by a compiler 

or a static analyzer as they would report the usage of an uninitialized value, which is undefined 

behavior. Still, this shows the importance of initializing member variables with default values, 

and a default member initializer is an option for this task.

Constructors and member initializer lists
Constructors are nameless methods in class definition that can’t be called explicitly. They are 

invoked upon the object initialization. A constructor that can be invoked with no arguments is 

called the default constructor. We already saw one in the uart class example:

    uart(std::uint32_t baud = 9600): baudrate_(baud) {

    // empty constructor body

    }

Even though this constructor has a parameter, we used the default argument that will be provided 

to the constructor if it is called with no arguments. If no argument is provided at the call site, the 

default value of 9600 will be used for the baud argument. 
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We use the following syntax when we want to use the default constructor:

    uart uart1;

This is also called default initialization, and it is performed when the object is declared with no 

initializer. Please note that there are no parentheses as this would cause syntax ambiguity and 

would be interpreted by the compiler as a function declaration.

    uart uart1();

The preceding line would be interpreted by the compiler as the declaration of a function named 

uart1 that returns the object of the uart class and accepts no arguments. This is the reason we 

are not using parentheses when using the default constructor.

As our uart class constructor can also accept an argument, we can use direct initialization syntax 

and provide the constructor with an argument, as follows:

    uart uart1(115200);

This will call the uart class constructor and provide it with a value of 115200 for the baud argument. 

While we have explained nuances related to the syntax of the default constructor, we still need 

to explain the initialization of the baudrate_ member variable. In this case, we are using the 

member initializer list. It is specified after the colon character and before the opening brace of 

the compound statement as baudrate_(baud). In our case, we have only one item in the member 

initializer list; if there are more, they are delimited with a comma, as in the following example:

class sensor {

public:

    sensor(uart &u, std::uint32_t read_interval):

                uart_(u),

                read_interval_(read_interval) {}

private:

    uart &uart_;

    const std::uint32_t read_interval_;

};

int main() {

    uart uart1;

    sensor sensor1(uart1, 500);

    return 0;

}



Classes – Building Blocks of C++ Applications104

In the preceding code, we are initializing a reference to uart and the read_interval_ unsigned 

integer in the member initializer list in the sensor constructor.

The important thing to notice is the reference to an object of the uart class. References in C++ are 

similar to pointers in C; that is, they point to an already-created object. However, they need to be 

initialized when declared and they can’t be reassigned to point to another object. References and 

const-qualified members must be initialized using a member initializer list.

Constructors can have no or many parameters. If a constructor has one parameter and is declared 

without the explicit specifier, it is called a converting constructor.

Converting constructors and explicit specifiers
Converting constructors allow the compiler to make an implicit conversion from the type of 

its argument to the type of its class. To better understand this, let’s take a look at the following 

example:

#include <cstdio>

#include <student>

struct uart {

    uart(std::uint32_t baud = 9600): baudrate_(baud) {}

    std::uint32_t baudrate_;

};

void uart_consumer(uart u) {

   printf("Uart baudrate is %d\r\n", u.baudrate_);

}

int main() {

    uart uart1;

    uart_consumer(uart1);

    uart_consumer(115200);

    return 0;

}
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The interesting part of this example is the call to the uart_consumer function with the 115200 

argument. The uart_consumer function expects the object of the uart class as an argument, 

but due to rules of implicit conversion and the existing converting constructor, the compiler 

constructs an object of the uart class using 115200 as an argument, resulting in the following 

output of the program:

Uart baudrate is 9600

Uart baudrate is 115200

Implicit conversion can be unsafe, and it is often unwanted. To prevent it, we can declare a 

constructor using an explicit specifier, as follows:

    explicit uart(std::uint32_t baud = 9600): baudrate_(baud) {}

Compiling the preceding example with an explicit constructor will result in a compiler error:

<source>:19:19: error: could not convert '115200' from 'int' to 'uart'

   19 |     uart_consumer(115200);

By declaring a constructor as explicit, we can be sure that no user of our class will create a situation 

with potential implicit conversion, which may lead to unwanted behavior in our program. But 

what if we want to prevent calls to our constructor using the float type? It may not be a good 

example, but you can imagine a constructor expecting a uint8_t type and someone calling it 

with a uint32_t argument.

We can delete specific constructors, which will result in failed compilation. We can do it using 

the following syntax in the class declaration:

    uart(float) = delete;

Calling the constructor with a float type will result in the following compile error:

<source>:12:25: error: use of deleted function 'uart::uart(float)'

   12 |     uart uart1(100000.0f);

We can also use brace list initialization, which narrows down the conversion and prevents the 

float-to-integer conversion. We can use it as follows:

    uart uart1{100000.0f};
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This call would result in the following compile error:

<source>:11:25: error: narrowing conversion of '1.0e+5f' from 'float' to 
'uint8_t' {aka 'unsigned char'} [-Wnarrowing]

   11 |     uart uart1{100000.0f};

The list initialization limits the implicit conversion and helps with detecting problems at compile 

time.

Class data members can be declared using the static keyword, and there are special rules for 

initializing them.

Static member initialization
Static members are not tied to the objects of a class or struct. They are variables with static storage 

duration, and they can be accessed by any object of a class. Let’s go through a simple example to 

better understand static members and how we initialize them:

#include <cstdio>

struct object_counter {

    static int cnt;

    object_counter() {

        cnt++;

    }

    ~object_counter() {

        cnt--;

    }

};

int object_counter::cnt = 0;

int main() {

    {

        object_counter obj1;

        object_counter obj2;

        object_counter obj3;

        printf("Number of existing objects in this scope is: %d\r\n",

                                           object_counter::cnt);

    }
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    printf("Number of existing objects in this scope is: %d\r\n", 

                                       object_counter::cnt);

    return 0;

}

In this example, we have a simple object_counter struct. The struct has one static data member, 

the cnt integer. In the constructor, we are incrementing this counter variable, and in the destructor, 

we are decrementing it. In the main function, we are creating three object_counter objects in 

an unnamed scope.

When the program flow exits the unnamed scope, destructors will be called. We are printing 

the number of existing objects both inside the scope and after leaving it. Inside the unnamed 

scope, the cnt value should be equal to 3, as we created three objects, and when we exit it, and 

destructors decrement the cnt variable, it should be 0. The following is the output of the example:

Number of existing objects in this scope is: 3

Number of existing objects in this scope is: 0

The output shows that the behavior of the cnt static variable is as we predicted. In this case, we 

declared a static variable in the class declaration, but we defined it using the following line:

int object_counter::cnt = 0;

With the C++17 standard, it is possible to declare a static variable using an inline specifier inside 

the struct (or class) definition and provide it with the initializer, as follows:

struct object_counter {

    inline static int cnt = 0;

    ...

};

This makes the code more concise, easier to use as we don’t need to define the variable outside 

the class definition, and easier to read.

We covered the basics of classes in C++, including access specifiers, initializing methods, and 

constructors. Now, we will see how we can reuse classes using inheritance and dynamic 

polymorphism.
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Inheritance and dynamic polymorphism
In C++, we can expand the functionality of a class without modifying it with inheritance. 

Inheritance is an example of establishing a hierarchical relationship between classes; for example, 

ADXL345 is an accelerometer. Let us go through a trivial example that demonstrates inheritance 

in C++:

#include <cstdio>

class A {

public:

    void method_1() {

        printf("Class A, method1\r\n");

    }

    void method_2() {

        printf("Class A, method2\r\n");

    }

protected:

    void method_protected() {

        printf("Class A, method_protected\r\n");

    }

};

class B : public A{

public:

    void method_1() {

        printf("Class B, method1\r\n");

    }

    void method_3() {

        printf("Class B, method3\r\n");

        A::method_2();

        A::method_protected();

    }

};

int main() {
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    B b;

    b.method_1();

    b.method_2();

    b.method_3();

    printf("-----------------\r\n");

    A &a = b;

    a.method_1();

    a.method_2();

    return 0;

}

In this example, class B inherits private and protected members from class A. class A is the 

base class, and class B is derived from it. The derived class has access to public and protected 

members of the base class. In the main function, we create an object of class B, and we call the 

method_1, method_2, and method_3 methods. The output of this part of the code is shown here:

Class B, method1

Class A, method2

Class B, method3

Class A, method2

Class A, method_protected

In the first line of the main function, we see that the call to the method_1 function on object b 

executes method_1 defined in class B even though it is derived from class A, and class A has 

also defined method_1. This is called static binding as the decision to call method_1 is defined in 

class A and is made by the compiler.

An object of the derived class B contains an object of the base class A. If we call method_2 on 

object b, the compiler will find no definition in class B, but as class B inherits from class A, the 

compiler will call method_2 on object a, which is a part of object b.

In method_3, we see that we can call methods of the base class from the derived class. We can also 

see that we can call protected methods of the base class. This is one of the use cases of private 

access specifiers; it allows access to derived classes.
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We can assign the object of the derived class to a reference of the base class. We could also do the 

same for a pointer. Here is the result of calls of methods made on the reference:

Class A, method1

Class A, method2

Calling method_1 on a reference of the base class will result in a call to method_1 defined in class 

A. This is another instance of static binding in action. But what if we wanted that a call on a base 

class reference or pointer to result in executing a function on the derived class? And why would 

we want this? Let’s first address the how. C++ provides a mechanism of dynamic binding through 

virtual functions.

Virtual functions
In our example, we assign a reference of type A& to an object of class B. If we want calls to 

method_1 on this reference (A& a) to execute the method_1 function defined in class B, we can 

declare method_1 as a virtual function in class A, as follows:

class A {

public:

    virtual void method_1() {

        printf("Class A, method1\r\n");

    }

...

};

Now, the call to method_1 on the reference of class A, bound to the object of class B, will result 

in a call to method_1 defined in class B, as we can see in the output:

Class B, method1

Class A, method2

Here, we see the output of the method_1 call matches the definition of this method from class 

B. We say that class B is overriding method_1 from class A, and there is a special notion for 

this, as follows:

class B: public A {

public:

    void method_1() override {

        printf("Class B, method1\r\n");

    }
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...

};

The override keyword makes the compiler aware of our intention of overriding a virtual method 

from the base class. If the method we are overriding is not declared virtual, the compiler will 

raise an error.

Virtual functions in C++ are usually implemented using virtual tables. This is the work that a 

compiler does for us. It creates a virtual table that stores pointers for every virtual function, which 

points to the overridden implementation.

Virtual function implementation
Every class that overrides a virtual function has a virtual table. You can think of it as a hidden 

table of function pointers. Every object of a class has a pointer to this table. This pointer is used 

at runtime to access a table and find the correct function to be called on the object. Let us slightly 

modify our class A and class B to better understand this. The following is the code of the 

modified class A and class B:

class A {

public:

    void method_1() virtual{

        printf("Class A, method1\r\n");

    }

    void method_2() virtual{

        printf("Class A, method2\r\n");

    }

};

class B : public A{

public:

    void method_2() override{

        printf("Class B, method2\r\n");

    }

 };

We modified class A and class B so that class A has two virtual methods, method_1 and 

method_2. class B only overrides method_2. The compiler will generate a virtual table for class 

B and a pointer that every object of class B will hold. The virtual pointer points to the generated 

virtual table. 
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This can be visualized as follows:

Figure 5.1 – Virtual table

Figure 5.1 depicts a possible implementation of virtual functions in C++ using virtual tables and 

virtual pointers. If we call method_2 on a reference to an object of class B, it will follow the virtual 

pointer to the virtual table and select the function pointer that points to the implementation 

of method_2 in class B, that is, the overridden virtual function. This mechanism happens at 

runtime. There is a layer of indirection to get to the overridden function, which results in space 

and time overhead.

In C++, we can define a virtual function to be a pure virtual function. If a class has a pure virtual 

function, it is called an abstract class, and it can’t be instantiated. Derived classes must override 

pure virtual functions, or they are also abstract classes. Let’s go through the following code 

example:

class A {

public:

    virtual void method_1() = 0;

};

class B : public A{

};

int main() {

    B b;

    return 0;

}
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This program will fail to compile as class B didn’t override the method_1 virtual method from 

class A. Abstract classes shift the responsibility of the implementation of certain behaviors 

(methods) to derived classes. Classes that have all virtual methods are called interfaces.

Inheritance defines a hierarchical relationship between classes, and we can say that class B is 

class A, just as a cat is an animal. We can represent this relationship in a Unified Modeling 

Language (UML) diagram.

UML class diagrams
UML diagrams are used to describe software components. If they describe the relationship between 

classes, they are called UML class diagrams. One such diagram is shown in the following figure:

Figure 5.2 – UML diagram of class A and class B’s relationship

Figure 5.2 depicts a UML class diagram visualizing the hierarchical relationship between A and B. 

The line connecting B and A with a hollow, unfilled triangular arrowhead pointing to A means B 

is A. This UML diagram also shows methods available in both classes.

UML diagrams are useful for describing design patterns, and we will use them in this book to help 

us visualize the relationship between software components in code examples.

We have learned what inheritance is and how we can use it with virtual functions to achieve 

dynamic binding. Let’s get back to the question of why we need these mechanisms and how we 

can use them to create better software. The mechanisms we learned in this chapter provide the 

means for dynamic (runtime) polymorphism.
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Dynamic polymorphism
Polymorphism is a mechanism that enables a single interface for different types. It can be static 

or dynamic. Dynamic polymorphism in C++ is achieved through inheritance and virtual functions. 

This type of polymorphism is also called subtyping, as it treats subtypes or derived classes through 

the interface based on the base class.

Polymorphism allows us to use a single interface for different implementations. Let us go 

through an example of the library for GSM modems. GSM modems usually communicate with 

the host microcontroller through the UART interface. A microcontroller may have multiple UART 

peripherals, such as UART and Low-Power Universal Asynchronous Receiver/Transmitter 

(LPUART) on STM32. We may also want to use the library on different microcontrollers.

We can define a common interface for different UART implementations on different platforms 

and use this interface in our GSM library. An implementation of UART will be provided by the 

platform on which we use the GSM library, and it will implement the common UART interface. 

We can use a UML class diagram to visualize our library design, as in the following figure:

Figure 5.3 – UML diagram of GSM library and UART interface
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In Figure 5.3, we see the relationship between the gsm_lib, uart, and uart_stm32 classes. GSM 

library functionality is implemented in the gsm_lib class, which uses the uart interface. The 

uart interface is implemented by the uart_stm32 class. The functionality of the GSM library is 

complex, but let’s go through a very simplified code example just to demonstrate the relationship 

between these three classes and how they work together. The following is a simplified example:

#include <span>

#include <cstdio>

#include <cstdint>

class uart {

public:

    virtual void init(std::uint32_t baudrate) = 0;

    virtual void write(std::span<const char> data) = 0;

};

class uart_stm32 : public uart{

public:

    void init(std::uint32_t baudrate = 9600) override { 

        printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

    } 

    void write(std::span<const char> data) override {

        printf("uart_stm32::write: ");

        for(auto ch: data) {

            putc(ch, stdout);

        }

    }

};

class gsm_lib{

    public:

        gsm_lib(uart &u) : uart_(u) {}

        void init() {

            printf("gsm_lib::init: sending AT command\r\n");

            uart_.write("AT");

        }

    private:

        uart &uart_;

};

int main() {

    uart_stm32 uart_stm32_obj;
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    uart_stm32_obj.init(115200);

    gsm_lib gsm(uart_stm32_obj);

    gsm.init();

    return 0;

}

In this code example, we see that the uart class has two pure virtual functions, which makes it an 

interface class. This interface is inherited and implemented by the uart_stm32 class. In the main 

function, we create an object of the uart_stm32 class, whose reference is passed to the constructor 

of the gsm_lib class, where it is used to initialize a private member reference to the uart interface.

You can also run this program in a simulator environment, which we covered in the previous 

chapter. It is available in the Chapter05/gsm_lib folder.

The design of the GSM library using the UART interface allows us to have a flexible library that we 

can use on different platforms. This design also allows us to debug the communication between 

the library and GSM modem by providing it with a UART implementation that will serve as a tap, 

redirecting reads and writes and simultaneously logging them.

Summary
In this chapter, we covered the basics of classes in C++. We learned about member access specifiers, 

different ways of initializing objects, and inheritance. We also got to know virtual functions in 

more detail and learned how to use them for dynamic polymorphism.

In the next chapter, we will talk more about other basic concepts in C++, such as namespaces, 

function overloading, and the standard library.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems
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Beyond Classes – Fundamental 
C++ Concepts

Historically, C++ started as C with classes, making classes one of the first concepts for developers 

with a C background to learn. In the previous chapter, we covered classes in detail, and before 

proceeding with more advanced concepts, we will cover other fundamental C++ concepts that 

make it so much more than C with classes.

Before we move on to more advanced topics, it’s important to explore other fundamental concepts 

that make C++ distinct. In this chapter, we’re going to cover the following main topics:

•	 Namespaces

•	 Function overloading

•	 Interoperability with C

•	 References

•	 Standard library containers and algorithms

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using modern C++ features make sure to select C++23 standard, by 

adding -std=c++23 in compiler options box.

https://godbolt.org/
https://godbolt.org/
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Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects 

the output and generated assembly. The examples are available at GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06).

Namespaces
Namespaces in C++ are used as scope specifiers for accessing type names, functions, variables, 

and so on. They allow us to more easily differentiate types and function names in large code bases 

that use many software components and where there are often similar identifiers. 

In C, we usually add a prefix to types and functions to make it easier to differentiate, for example:

typedef struct hal_uart_stm32{

    UART_HandleTypeDef huart_;

    USART_TypeDef *instance_; 

} hal_uart_stm32;

void hal_init();

uint32_t hal_get_ms();

In C++, we can use namespaces instead of C-style identifier prefixes to organize code in logical 

groups, as shown in the following example:

namespace hal {

void init();

std::uint32_t tick_count;

std::uint32_t get_ms() {

    return tick_count;

}

class uart_stm32 {

private:

    UART_HandleTypeDef huart_;

    USART_TypeDef *instance_; 

};

};

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter06
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All members of the hal namespace are accessible unqualified from within the namespace.  

To access identifiers from the hal namespace, in code outside of it, we use the namespace as a 

qualifier followed by scope resolution operator (::), as shown in the following example:

hal::init();

std::uint32_t time_now = hal::get_ms();

In this example, beside the hal namespace, we also see the std namespace, which we used in 

previous examples. C++ standard library types and functions are declared in the std namespace.

We can use the using directive to access an identifier without qualifiers, as shown in the follow-

ing example:

using std::array;

array<int, 4> arr;

The using directive can also be used for the entire namespace, as shown in the following example:

using namespace std;

array<int, 4> arr;

vector<int> vec;

It is recommended to use using directive sparingly, especially with std, using it for a limited 

scope, or even better, to bring in individual identifiers only.

The same namespace can be used across different header files to declare identifiers. For example, 

std::vector is declared in vector.h, and std::array is declared in array.h header files. This 

allows us to organize code from different headers that logically belong to the same group in a 

namespace.

Functions and types that are not declared within an explicit namespace are part of a global name-

space. It is a good practice to organize all code in namespaces. The only function that can’t be de-

clared within a namespace and must be in a global namespace is main. To access the identifier from 

the global namespace, we use the scope resolution operator, as shown in the following example:

const int ret_val = 0;

int main() {

    return ::ret_val;

}
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The line return ::ret_val; uses the scope resolution operator, ::, without specifying a  

namespace. This means it refers to the global namespace. So, ::ret_val accesses the ret_val 

variable defined outside of any function or class—that is, at the global scope.

Unnamed namespaces
A namespace can be declared without the name qualifier. This allows us to declare functions and 

types that are local to the translation unit they are declared in. In the following example, we can 

see an example of an unnamed namespace:

namespace {

constexpr std::size_t c_max_retries;

std::size_t counter;

};

In the code, we have an unnamed namespace with a few variables declared in it. They have  

internal linkage, meaning they cannot be accessed by code from other translation units. We can 

achieve the same effect both in C and C++ by using the static storage specifier.

Nested namespaces
Namespaces can also be nested. We can have a namespace within a namespace, as shown in the 

following example:

namespace sensors {

namespace environmental {

class temperature {

};

class humidity {

};

};

namespace indoor_air_quality{

class c02{

};

class pm2_5{

};

};

};
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In this example, we have organized sensors in namespaces. We have a top-level namespace, 

sensors, which has two namespaces: environmental and indoor_air_quality. C++17 standard 

allows us to write namespaces, as shown in the following example:

namespace sensors::environmental {

class temperature {

};

class humidity {

};

};

Namespaces are a good way to make the code more readable, as they allow us to keep identifiers 

short, without C-style prefixes.

Function overloading
In the previous chapter, when we discussed inheritance, we mentioned static binding. We saw 

that we can have the same function names for functions that belong to different classes. However, 

we can also have the same function names for different function parameters, as shown in the 

following example:

#include <cstdio>

void print(int a) {

    printf("Int %d\r\n", a);

}

void print(float a) {

    printf("Float %2.f\r\n", a);

}

int main() {

    print(2);

    print(2.f);

    return 0;

}
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In this example, we have two print functions. One of them has an int as a parameter and the 

second one has a float. On the call site, the compiler will pick a print function based on the 

arguments passed to the function call.

Functions with the same names within the same scope are called overloaded functions. Instead 

of having two different names, such as print_int and print_float, we can use the same name 

for both these functions and let the compiler decide which function to call.

To distinguish between the two overloaded print functions – one accepting an int parame-

ter and the other a float – the compiler employs a technique called name mangling. Name  

mangling modifies function names by encoding additional information, such as parameter types, 

into them. This ensures that each overloaded function has a unique symbol in the compiled code. 

If we examine the assembly output of the previous example, we can observe these mangled names:

_Z5printi:

        mov     r1, r0

        ldr     r0, .L2

        b       printf

_Z5printf:

        vcvt.f64.f32    d16, s0

        ldr     r0, .L5

        vmov    r2, r3, d16

        b       printf

We see that the compiler assigned _Z5printi and _Z5printf labels to print functions with  

int and float parameters respectively. This allows it to dispatch function calls according to 

argument matching.

Overloaded functions can have a different number of arguments. Return types cannot be used 

for function overloading. Two functions with the same name and same arguments cannot have 

different return types. The following code would result in a compile error:

int print(int a);

void print(int a);

This code would be treated by the compiler as a function redeclaration and would result in an error.

Function overloading is a basic but powerful feature of C++ that provides a mechanism for com-

pile-time or static polymorphism.
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Interoperability with C
Code examples from previous chapters that you were able to run in a Renode simulator are  

using both C++ and C code. We used vendor provided HAL library and Common Microcontroller  

Software Interface Standard (CMSIS) by Arm, both written in C and contained in the platform 

folder.

If you take a look at the CMakeLists.txt file and the add_executable function in it, you will see 

listed C files from the platform folder and just a few C++ files. Building a project will provide the 

following console output:

[  7%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal.c.o

[ 15%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_cortex.c.o

[ 23%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_gpio.c.o

[ 30%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_rcc.c.o

[ 38%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_uart.c.o

[ 46%] Building C object CMakeFiles/bare.elf.dir/platform/STM32F0xx_HAL_
Driver/Src/stm32f0xx_hal_uart_ex.c.o

[ 53%] Building ASM object CMakeFiles/bare.elf.dir/platform/startup_
stm32f072xb.s.o

[ 61%] Building C object CMakeFiles/bare.elf.dir/platform/src/stm32f0xx_
hal_msp.c.o

[ 69%] Building C object CMakeFiles/bare.elf.dir/platform/src/stm32f0xx_
it.c.o

[ 76%] Building C object CMakeFiles/bare.elf.dir/platform/src/system_
stm32f0xx.c.o

[ 84%] Building CXX object CMakeFiles/bare.elf.dir/app/src/main.cpp.o

[ 92%] Building CXX object CMakeFiles/bare.elf.dir/hal/uart/src/uart_
stm32.cpp.o

[100%] Linking CXX executable bare.elf

Every C and C++ file is treated as a translation unit and built separately by C and C++ compilers 

respectively. After compilation, both C and C++ object files are linked into a single ELF file.
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External and Language Linkage in C++
Variables and functions that can be referred to from other translation units have external linkage. 

This allows them to be linked with code in other files provided that the compiler has access to 

declarations. They also have a property called language linkage. This property allows linking C++ 

with C code. C language linkage in C++ is declared using the following syntax:

extern "C" {

void c_func();

}

Declaration with C language linkage will be linked according to C language linkage conventions, 

preventing name mangling (among other things) to ensure proper linking with code compiled 

within a C translation unit.

C standard library in C++
C++ wraps the C standard library and provides header files with the same name as the C language 

version but with a c prefix and no extension. For example, the C++ equivalent for the C language 

header file <stdlib.h> is <cstdlib>.

In GCC, implementation C++ wrappers include C standard library headers; for example, <cstdio> 

includes <stdio.h>. If you dive into <stdio.h>, you can see that it guards function declarations 

with __BEGIN_DECLS and __END_DECLS macros. Here’s the definition of these macros:

/* C++ needs to know that types and declarations are C, not C++.  */

#ifdef    __cplusplus

# define __BEGIN_DECLS    extern "C" {

# define __END_DECLS    }

#else

# define __BEGIN_DECLS

# define __END_DECLS

#endif

Here, we can see that standard C library headers take care of C++ compatibility by adding a 

language linkage specifier if a C++ compiler is used. This practice is also used in many HAL im-

plementations provided by microcontroller vendors. If you open any C header file in platform/

STM32F0xx_HAL_Driver/Inc, you will see that declarations are guarded with a C language linkage 

specifier when they are accessed by the C++ compiler, as shown here:

#ifdef __cplusplus

extern "C" {
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#endif

// Declarations

#ifdef __cplusplus

}

#endif

C libraries are often used by C++ programs, especially in the embedded domain, so it is always 

a good idea to guard them with a language linkage specifier. If we are using a C library in a C++ 

program in which headers are not guarded internally, we can guard the headers at the include 

site, as shown here:

extern "C" {

#include "c_library.h"

}

The language linkage specifier for C language ensures proper linking of C++ code that is using C 

code, which is often a case in embedded projects.

References
In the previous chapter, we briefly mentioned references without explaining them in detail.  

References are object aliases; that is, they refer to objects and as such they must be immediately 

initialized. They are not objects, so there are no pointers to references or arrays of references.

There are two different types of references in C++: lvalue and rvalue references.

Value categories
C++ expressions have either lvalue or rvalue value categories. There is a more detailed division of 

value categories, but we will stay with this simple one which has a historical origin.

Lvalues usually appear on the left side of the assignment expression, but this is not always the 

case. Lvalues have an address that the program can access. Here are some examples of lvalues:

void bar();

int a = 42; // a is lvalue

int b = a; // a can also appear on the right side

int * p = &a; // pointer p is lvalue

void(*bar_ptr)() = bar; // func pointer bar_ptr is lvalue
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Rvalues usually appear on the right side of the assignment expression. Examples are literals, 

function calls that do not return references, and built-in operator calls. We can think of them as 

temporary values. Some rvalues are shown in the following example:

int a = 42; // 42 is rvalue

int b = a + 16; // a + 16 is rvalue

std::size_t size = sizeof(int); // sizeof(int) is rvalue

Here is another, full example to help you better understand rvalues:

#include <cstdio>

struct my_struct {

    int a_;

    my_struct() : a_(0) {}

    my_struct(int a) : a_(a) {}

};

int main() {

    printf("a_ = %d\r\n", my_struct().a_);

    printf("a_ = %d\r\n", (my_struct()=my_struct(16)).a_);

    return 0;

}

In the preceding example, we can see the my_struct() rvalue expression on the left side of the 

assignment operator. The output of the example is as follows:

a_ = 0

a_ = 16

In the first printf call, we make a call to the constructor of my_struct, which returns a  

temporary object, and we access the a_ member. In the next line, we have the following  

expression: my_struct()=my_struct(16). On the left side of this expression, we have a call to 

the default constructor, which returns a temporary object. Then we assign the result of the call 

to a constructor that accepts int to a temporary object on the left side, which will copy one  

temporary object to the other one.
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Lvalue references
Lvalue references are used as aliases for existing objects. They can also be const-qualified. We 

declare them by adding & to type names. The following code demonstrates the usage of lvalue 

references:

#include <cstdio>

int main() {

    int a = 42;

    int& a_ref = a;

    const int& a_const_ref = a;

    printf("a = %d\r\n", a);

    a_ref = 16;

    printf("a = %d\r\n", a);

    // a_const_ref = 16; compiler error

    return 0;

}

As shown in the example, we can manipulate the object using the reference. In the case of a  

constant reference, any attempts to change the value will result in a compiler error.

Rvalue references
Rvalue references are used to extend the lifetime of temporary rvalues. We declare them using 

&& next to the type name. Here are example usages of rvalue references:

int&& a = 42;

int b = 0;

// int&& b_ref = b; compiler error

int&& b_ref = b + 10; // ok, b + 10 is rvalue

Rvalue references cannot be bound to lvalues. Attempting to do so will result in a compiler error. 

Rvalue references are important for resource management, and they are used in move semantics, 

which allow resources to be moved from one object to another.
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If we take a look at the documentation for the push_back method of std::vector, we will see 

two declarations:

void push_back( const T& value );

void push_back( T&& value );

The first declaration is used to initialize a new vector member by copying value. The second 

declaration with rvalue reference will move value, meaning that a new vector member will take 

ownership of dynamically allocated resources from the value object. Let’s take a look at the 

following example to understand the basics of move semantics:

#include <string>

#include <vector>

#include <cstdio>

int main()

{

    std::string str = "Hello world, this is move semantics demo!!!";

    printf("str.data address is %p\r\n", (void*)str.data());

    std::vector<std::string> v;

    v.push_back(str);

    printf("str after copy is <%s>\r\n", str.data());

    v.push_back(std::move(str));

    //v.push_back(static_cast<std::string&&>(str));

    printf("str after move is <%s>\r\n", str.data());

    

    for(const auto & s:v) {

        printf("s is <%s>\r\n", s.data());

        printf("s.data address is %p\r\n", (void*)s.data());

    }

    return 0;

}



Chapter 6 129

In this example, we have two calls to the push_back method of std::vector<std::string>.  The 

first call, v.push_back(str);, performs a copy of str into the vector. After this operation, the 

original str remains unchanged, which is confirmed by the output:

str.data address is 0x84c2b0

str after copy is <Hello world, this is move semantics demo!!!>

The second call, v.push_back(std::move(str));, uses std::move to cast str to an rvalue  

reference. This signals to the compiler that the resources of str can be moved rather than copied. 

As a result, the internal data of str is transferred to the new string in the vector, and str is left in 

a valid but unspecified state, often becoming empty:

str after move is <>

s is <Hello world, this is move semantics demo!!!>

s.data address is 0x84d330

s is <Hello world, this is move semantics demo!!!>

s.data address is 0x84c2b0

In the preceding output, we are also printing addresses of the string’s underlying character arrays 

using s.data() and str.data().Here’s what’s happening:

•	 The original str has its data at address 0x84c2b0

•	 After copying str into the vector, the first element, v[0], has its own copy of the data at a 

different address (0x84d330), confirming that a deep copy was made

After the move, the second element, v[1], in the vector now points to the original data address, 

0x84c2b0. This indicates that the internal data of str was moved into v[1] without copying. 

This is just a glimpse into move semantics; there is much more to it, but as it is used mostly for 

managing dynamically allocated resources, we will not cover it in more detail.

Standard library containers and algorithms
We have already discussed some of the containers from the C++ library, such as std::vector 

and std::array, in previous chapters. As std::vector relies on dynamic memory allocation, 

std::array is usually the container of choice in embedded applications.

Array
Arrays from the standard library allocate a contiguous block of memory on the stack. We can 

consider an array as a simple wrapper of a C-style array that contains the size of the array inside 

the type. It is a templated type that is instantiated with an underlying data type and size.
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We can access members of the array using a method that will throw an exception if indexed with 

an out-of-bounds index. This makes it a safer option than a C-style array as it allows us to catch 

out-of-bounds access runtime errors and handle them. If exceptions are disabled, we can set a 

global terminate handler with our functionality. We had the opportunity to see this in Chapter 2 

of this book when we were discussing exceptions.

We can use std:array to create a vector-like container that we can use with container adaptors 

such as std::stack or a std::priority queue. We will call our new type fixed_vector. It will 

inherit from std::array and implement the push_back, pop_back, empty, and end methods. Here 

is an implementation of our new type using an array from the standard library:

template <typename T, size_t S> class fixed_vector : public std::array<T, S> 
{

  public:

    void push_back(const T &el) {

        if(cnt_ < S) {

            this->at(cnt_) = el;

            ++cnt_;

        }

    }

    T &back() {

        return this->at(cnt_-1);

    }

    void pop_back() {

        if(cnt_) {

            --cnt_;

        }

    }

    auto end() {

        return std::array<T, S>::begin() + cnt_;

    }

    bool empty() const {

        return cnt_ == 0;

    }
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  private:

    size_t cnt_ = 0;

};

Our new type, fixed_vector, exploits the underlying std::array and implements the push_

back function to add elements at the end of the array. If we want to add more elements than is  

possible, it will fail silently. This behavior can be adjusted as per the application’s requirements. 

It also implements the back method, which returns an lvalue reference to the last element, and 

pop_back, which decrements the private member, cnt_, used to keep track of the number of 

elements stored in the container.

We can use our new container type, fixed_vector, as an underlying container type for container 

adaptors such as stacks and priority queues.

Container adaptors
Stack is a simple Last In-First Out (LIFO) container adaptor, and the priority queue will sort the 

elements when inserting them. We can see how to use them with fixed_vector in the following 

example:

int main() {

    std::priority_queue<int, fixed_vector<int, 10>> pq;

    pq.push(10);

    pq.push(4);

    pq.push(8);

    pq.push(1);

    pq.push(2);

    printf("Popping elements from priority queue: ");

    while(!pq.empty()) {

       printf("%d ", pq.top());

       pq.pop();

    }

    std::stack<int, fixed_vector<int, 10>> st;

    st.push(10);
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    st.push(4);

    st.push(8);

    st.push(1);

    st.push(2);

    printf("\r\nPopping elements from stack (LIFO): ");

    while(!st.empty()) {

       printf("%d ", st.top());

       st.pop();

    }

    return 0;

}

In this example, we are using fixed_vector to instantiate std::stack and std::priority_queue 

templated types. If we run this program, we will get the following output:

Popping elements from priority queue: 10 8 4 2 1

Popping elements from stack (LIFO): 2 1 8 4 10

As you can see from the output, elements in the priority queue are sorted, and those in the stack 

are popped by the LIFO principle.

The standard library provides a variety of containers, and we have just scratched the surface of 

the possibilities that it provides. It also provides algorithms that operate on containers.

Algorithms
C++ standard library offers a huge set of templated algorithm functions contained in the algorithm 

header that play well with different container types. We will go through some of them now.

std::copy and std::copy_if
std::copy and std::copy_if are used to copy elements from one container to another. std::copy_

if also accepts a predicate function that controls whether a member is copied or not, as shown 

in the following example:

#include <cstdio>

#include <vector>

#include <array>

#include <algorithm>
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#include <numeric>

void print_container(const auto& container) {

    for(auto& elem: container) {

       printf("%d ", elem);

    }

       printf("\r\n");

}

int main() {

    std::array<int, 10> src{0};

    std::array<int, 10> dst{0};

    std::iota(src.begin(), src.end(), 0);

    std::copy_if(src.begin(), src.end(), dst.begin(),[] 

        (int x) {return x > 3;});

    print_container(src);

    print_container(dst);

    return 0;

}

In this example, we use std::iota from the numeric header to initialize the src array with incre-

menting values, starting with 0. Then, we copy all elements from the src array to the dst array 

that are larger than 3 using std::copy_if.

std::sort
std::sort is used to sort elements in a container. In the following example, we will generate 

elements randomly and sort them:

int main() {

    std::array<int, 10> src{0};

    std::random_device rd;

    std::mt19937 gen(rd());

    std::uniform_int_distribution<> distrib(1, 6);
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    auto rand = [&](int x) -> int {

        return distrib(gen);

    };

    std::transform(src.begin(), src.end(), src.begin(), rand);

    print_container(src);

    std::sort(src.begin(), src.end());

    print_container(src);

    return 0;

}

In this example, we populate the src array using std::transform, which applies a rand lambda 

to every member of the src array. We used types from the random header to generate random 

numbers between 1 and 6. After we populate the array with random numbers, we sort it using 

std::sort. A possible output of this program is shown here:

6 6 1 1 6 5 4 4 1 1

1 1 1 1 4 4 5 6 6 6

We first see values in the array before sorting and then applying std::sort. We could have populat-

ed the initial array in a for loop, but we used the opportunity to demonstrate std:transform here.

These were some of the algorithms from the C++ standard library; there are many more that can 

be used to effectively solve common tasks in containers.

Summary
In this chapter, we covered C++ fundamentals such as namespaces, function overloading, refer-

ences, and standard library containers and algorithms. We also learned how C interoperability 

is implemented and used in C++ programs.

In the next chapter, we will learn about error-handling mechanisms in C++.



7
Strengthening Firmware – 
Practical C++ Error Handling 
Methods

To ensure the proper functioning of firmware, we must handle errors from vendor-specific code, 

libraries that we are using in a project, and our own code. Error codes are standard error-handling 

mechanisms in C, and they are also used in C++. However, C++ provides us with other tools, most  

notably exceptions that are often avoided in embedded projects due to the large binary  

footprint and non-determinism. Still, we will discuss exceptions in C++ in this chapter to show  

their benefits in the error-handling process.

Besides exceptions, C++ offers more options for error handling that will also be discussed in this 

chapter. The goal of this chapter is to understand potential issues with error codes and see how 

to mitigate them in C++.

In this chapter, we’re going to cover the following main topics: 

•	 Error codes and asserts

•	 Exceptions

•	 std:: optional and std::expected
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using modern C++ features make sure to select C++23 standard, by 

adding -std=c++23 in compiler options box. 

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects 

the output and generated assembly. The examples are available at GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07).

Error codes and asserts
Error codes are a common way of reporting and handling errors in C. They are also still used in 

C++. A function that fails reports an error through enumerated codes that are checked by a caller 

and handled appropriately. Let us analyze how error codes work from both the caller and the 

callee perspective.

A function that returns an error must have a list of errors that are exposed to callers. This list is 

maintained through a software life cycle, and it can be subject to changes. Enumerated error codes 

can be added, removed, or modified. A caller must be aware of the error codes that the callee is 

returning, and it needs to handle them. Or, if it doesn’t know how to handle an error, it should 

propagate it further within a call stack.

Let’s observe a simple example of a function that returns an error and analyze the implications 

this has for the code using this function:

enum class error {

    Ok,

    Error1,

    Error2,

    Unknown

};

error h() {

    return error::Error1;

}

error g() {

    auto err = h();

    if(err!=error::Ok) {

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter07
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        if(err == error::Error1) {

       // handle error directly

        }

        else if(err == error::Error2) {

            // propagate this error

            return err;

        }

        else {

            // unknown error

            return error::Unknown;

        }

    }

    return error::Ok;

}

void f() {

    auto err = g();

    if(err==error::Ok) {

        printf("Succes\r\n");

    }

    else {

        // handle errors

    }

}

In the preceding example, the h function returns an error of enum class error. The g function 

calls the h function and executes the following steps:

1.	 Checks if h returned an error that is different from error::Ok. This indicates that the h 

function didn’t perform its task and there is an error that should be handled.

2.	 If h returned an error, checks whether it is error::Error1. In this case, g knows how to 

handle this error and it handles it.

3.	 If h returned error::Error2, g is not capable of handling it, and it forwards it up the call 

stack.

4.	 Returns error::Ok to indicate up the call stack that everything went fine.

Function g is called by f, and f also needs to be aware of errors defined in enum class error. It 

should handle them or pass them up the stack.
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Error codes rely on design contracts. The caller must check if the callee returned an error, and 

if it did, it needs to handle it or pass it up the call stack. Now, we can identify several potential 

problems with this simple approach:

•	 We cannot enforce error handling by a caller. It can just discard the return value.

•	 The caller can forget to handle some of the error cases.

•	 The caller can forget to pass the error up the call stack.

These are serious design flaws that put an extra burden on code development. There is no escape 

hatch in case we forget to handle an error somewhere. The program stays in an unknown state 

and this potentially leads to unwanted behavior.

We can address the first concern using the nodiscard attribute. It can be used with a function 

declaration or enumeration declaration. In our case, we can use it with an enum class error 

declaration as follows:

enum class [[nodiscard]] error {

    Ok,

    Error1,

    Error2,

    Unknown

};

When a function returning the enum class error is called, and the return value is discarded, the 

compiler is encouraged to raise a warning. If we call the g or h function from our example, GCC 

will raise a warning similar to this one:

<source>:48:6: warning: ignoring returned value of type 'error', declared 
with attribute 'nodiscard' [-Wunused-result]

If we set up the compiler to treat all warnings as errors, this would break the compilation process 

and force us to use the return value in code. Even though the nodiscard attribute is useful and 

should be used for similar use cases, it is not a complete solution to our problem. It will enforce 

usage of the return value, but the caller may still fail to check the error code for all possible cases 

and address it properly.

Almost every application has some types of errors that are unrecoverable and the only thing it 

makes sense to do is to log them, display them to a user (if possible), and terminate the program, 

as there is no sense in proceeding with such a program state. For these types of errors, we can 

use a global error handler, as they are too important to be left open in the wild and potentially 

not handled by a caller.
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Global error handlers
Global error handlers can be implemented as free functions. They are used system-wide to  

address errors that are unrecoverable and when it is necessary to stop the execution of firmware 

due to the severity of an error.

Let’s take a look at an example of firmware using an accelerometer. If there are any issues in 

I2C communication with the accelerometer, it doesn’t make sense to proceed further with code  

execution – the firmware will display a message to the user and terminate:

#include <cstdio>

#include <cstdint>

#include <cstdlib>

int i2c_read(uint8_t *data, size_t len) {

    return 0;

}

namespace error {

    struct i2c_failed{};

    struct spi_failed{};

    void handler(i2c_failed err) {

        printf("I2C error!\r\n");

        exit(1);

    }

    void handler(spi_failed err) {

        printf("SPI error!\r\n");

        exit(1);

    }

};

class accelerometer {

public:

    struct data {

        int16_t x;

        int16_t y;

        int16_t z;
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    };

    data get_data() {

        uint8_t buff[6];

        if(i2c_read(buff, 6) != 6) {

            error::handler(error::i2c_failed{});

        }

        return data{};

    }

};

int main () {

    accelerometer accel;

    auto data = accel.get_data();

    return 0;

}

In the preceding example, we have an accelerometer class with the get_data method, which 

uses the i2c_read function from the vendor-specific HAL in C (let us pretend this is the case).

The i2c_read function returns the number of read bytes. In our example, the return value is 

stubbed to 0 so we can simulate the erroneous behavior of the accelerometer (or the I2C bus). In 

case i2c_read returns a number different from the requested number of bytes, get_data will 

call error::handler.

We implemented an error handler using a tag-dispatching mechanism. We are overloading the 

error::handler function with so-called tags, or empty types. In our example, we have two tags, 

i2c_failed and spi_failed, and two overloaded error handlers. Tag dispatching has a couple 

of advantages over defining error codes with enum:

•	 We need to overload error handlers for every tag that is used in code. Error handlers are 

implemented individually for every error type. This adds to the readability of code.

•	 In case we make a call to an error handler that is not overloaded, the compilation will fail, 

forcing us to implement it.

In our example, the error handler will print a message using the printf function and make a 

call to the exit function, effectively terminating the program. In real-world situations, how we 

handle errors depends on the application. For example, for a medical device, if critical operations 

become unsafe after an error, we would first attempt to recover from the error. 
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If recovery failed, the system would enter a critical error state, alert medical personnel, and grace-

fully terminate the treatment operation.

An error on the I2C bus or, more generally, failed communication with external devices must be 

handled appropriately through robust error-handling mechanisms.

On the other hand, there are conditions that indicate programming mistakes – situations that 

should never occur if the code is correct. These include violations of preconditions, such as input 

parameters being out of expected boundaries due to logic errors in the code. Proceeding under 

such circumstances could lead to undefined behavior or system instability. To detect these pro-

gramming errors during development, we use asserts.

Asserts
Asserts are primarily used during development to detect programming mistakes by verifying 

that certain conditions hold true at specific points in the code. They help identify logical errors 

and incorrect assumptions by halting execution when an unexpected condition occurs. A macro 

assert is defined in <cassert> in the standard library. It is used to check a logical expression, 

and in case the logical expression is false, it prints diagnostic information and calls std::abort, 

effectively terminating the program.

To better understand asserts, and how to use them, let us take a look at the following code example:

#include <cassert>

#include <cstdint>

enum class option : std::uint8_t {

    Option1 = 0,

    Option2,

    Option3,

    Last

};

option uint8_to_option(uint8_t num) {

    assert(num < static_cast<uint8_t>(option::Last));

    return static_cast<option>(num);

}

int main() {

    const option opt = uint8_to_option(3);

    return 0;

}
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In the preceding example, we have defined the option enum class with uint8_t as an underlying 

type. We will use it to allow users to select an option over a network interface and we want to make 

sure that the conversion from uint8_t to the option enum is always correct. The uint8_to_option 

function will assert if the received uint8_t argument is not smaller than option::Last. 

In the example, we called uint8_to_option with argument 3, which is not smaller than 

option::Last, meaning that the assert macro will print the following diagnostic information 

and make a call to std::abort to terminate the program:

assertion "num < static_cast<uint8_t>(option::Last)" failed: file "/home/
amar/projects/Cpp-in-Embedded Systems/Chapter07/error_handling/app/src/
main.cpp", line 21, function: option uint8_to_option(uint8_t)

Now, this is quite a lengthy debug statement. Let’s take a look at the assert macro definition:

#define assert(expr)                             \

     (static_cast <bool> (expr)                  \

      ? void (0)                                 \

      : __assert_fail (#expr, 

                       __ASSERT_FILE,            \

                       __ASSERT_LINE,            \

                       __ASSERT_FUNCTION))

We see that the expression is cast to a bool type and that the ternary operator does nothing if 

the expression is true, or it makes a call to the __assert_fail function if the expression is false. 

The assert macro passes the expression as a string literal, the filename as a string literal, the line 

number, and also a function name as a string literal. All these string literals must be stored in the 

binary, taking up precious memory.

Asserts can be disabled by defining the NDEBUG macro before including <cassert> as in the fol-

lowing lines:

#define NDEBUG

#include <cassert>

We can also define NDEBUG using the build system. The assert macro will do nothing if NDEBUG 

is defined before <cassert> is included. This option is left to be used in case we want to disable 

asserts, as they are most commonly used in debug builds, and disabled in production builds. They 

should be disabled before the safety-critical software validation.
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The assert macro, as implemented in the standard library, is not suitable for embedded systems 

as it includes the filename, function name, and assert expression as string literals, which end 

up stored in the flash of the embedded target. Moreover, asserts are mostly intended to be used 

during debugging, and they are often disabled in production builds. Still, there is a benefit of asserts 

enabled in production builds, as they can provide valuable insights for postmortem debugging if 

they are implemented to log data when the expression is evaluated as false.

We will examine an alternative approach to logging information using asserts. As we have already 

concluded, the default assert macro implementation is not well suited for embedded targets, even 

though it contains useful information for debugging: filename, function name, and line number. 

Instead of a lengthy string describing an exact location of the assert macro line in our code, we 

can simply log a program counter and use the map file and addr2line tool to convert the address 

to the exact line. We can see a simple macro definition and a helper function to implement this 

in the following code:

void log_pc_and_halt(std::uint32_t pc) {

    printf("Assert at 0x%08lX\r\n", pc);

    while(true) {}

}

#define light_assert(expr)         \

        (static_cast<bool> (expr)  \

        ? void (0)                 \

        : log_pc_and_halt(hal::get_pc())    \

        )

We have defined a macro named light_assert that, instead of __assert_failed, calling log_pc_

and_halt. It is passing the return value from hal::get_pc as an argument to log_pc_and_halt. 

To see this code in action, you can take a look at the example in the Chapter07/error_handling 

project.

The project for this chapter is configured so that you can configure it to use different main C++ 

files and configure which one is going to be used with CMake. Let us start our Docker container 

using the following commands:

$ docker start dev_env

$ docker exec -it dev_env /bin/bash
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This should get us in the Docker terminal. Run ls –l to make sure that the Cpp-in-Embedded-

Systems repo is cloned. If not, clone it using the following command:

$ git clone https://github.com/PacktPublishing/Cpp-in-Embedded-Systems.git

Start Visual Studio Code, attach it to the running container, and open Chapter07/error_handling 

project as described in Chapter 4 and run the following commands in the Visual Studio Code 

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
assert.cpp

$ cmake --build build --target run_in_renode

The preceding commands will build the firmware using the app/src/main_assert.cpp file and 

run it in Renode simulator. You should see similar output to this in the terminal:

14:11:06.6293 [INFO] usart2: [host: 0.31s (+0.31s)|virt: 0s (+0s)] Assert 
example

14:11:06.6455 [INFO] usart2: [host: 0.32s (+15.87ms)|virt: 0.11ms 
(+0.11ms)] Assert at 0x08000F74

As we can see, the assert evaluated expression to false and printed out the 0x08000F74 program 

counter value. We can convert this value to the line from a source file using the following command:

$ arm-none-eabi-addr2line --exe bare.elf 0x08000F74

This will result in the following output:

/workspace/Cpp-in-Embedded-Systems/Chapter07/error_handling/app/src/main_
assert.cpp:30 (discriminator 1)

As you can see, we are able to get the exact line of the source of the assert using this approach and 

by logging just 4 bytes of data (address). In this implementation, log_pc_and_halt just print the 

address. In production implementations, we can store the address in non-volatile memory and 

use it for postmortem debugging.

The hal::get_pc() function is declared with an inline specifier. We use inline as a hint to  

the compiler to insert instructions from a function directly to a call site, that is, not to make a 

function call. The compiler doesn’t necessarily need to comply with our intentions, and that can 

be observed by building this example using the O0 optimization level.
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We use asserts to catch programming errors – situations that should never occur if the code is 

correct. They are often employed to validate internal assumptions and invariants within criti-

cal functions. The primary purpose of asserts is for debugging; they help developers find and 

fix bugs during the development phase. However, as we’ve seen, customized asserts can also  

provide valuable insights into production builds for postmortem analysis. While asserts are useful 

for detecting programming mistakes during development, they are not a substitute for proper 

error handling in production code. Error codes can be cumbersome because they require manual 

propagation of errors up the call stack. C++ offers exceptions as a solution to these problems, 

providing a structured way to handle errors without cluttering the code with error-checking logic.

Next, we will go over C++ exceptions to better understand the benefits they offer from the  

error-handling aspect.

Exceptions
Exceptions in C++ are error-handling mechanisms that are based on the principle of throwing 

and catching objects of an arbitrary type. All exceptions that are thrown from the standard library 

derive from the std::exception class defined in the <exception> header. We put code that may 

throw an exception in the try block, and we define the type of exception we want to catch in the 

catch clause, as shown in the following example:

    std::array<int, 4> arr;

    try {

      arr.at(5) = 6;

    }

    catch(std::out_of_range &e) {

      printf("Array out of range!\r\n");

    }

 Exercise for you!

As an exercise, edit CMAKE_C_FLAGS_DEBUG and CMAKE_CXX_FLAGS_DEBUG in 

CMakeLists.txt, and instead of Og, use O0. Build and run the program and run the 

addr2line utility on the output. To mitigate this concern, you can define a macro 

to be used instead of the hal::get_pc() function.
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In the preceding example, we have defined std::array arr, an array of integers with four mem-

bers. In the try block, we are trying to access an element with index 5, which is clearly out of the 

defined range, and the at method will throw the std::out_of_range exception. In order to run 

this example, go to the Chapter07/error_handling folder, make sure that the build folder is 

deleted, and run the following commands:

$ mkdir build && cd build

$ cmake .. -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_exceptions.
cpp

$ make –j4

$ make run_in_renode

You should see Array out of range! printed in the terminal.

Now, while building the example, you may have noticed that the size of the binary is a whooping 

88 KB. What happened?

In order to enable exceptions, besides using the -fexceptions compiler flag, we also had to 

disable the nano specs that we used in previous examples. Nano specs define the usage of the C 

standard newlib-nano library and size-optimized libstdc++ and libsupc++ libraries. These are 

built without exception support and if we use them, any attempt at throwing exceptions will result 

in std::abort being called instead. By disabling nano specs, we are using an unoptimized C++ 

standard library, which results in the 88 KB binary size. A size-optimized standard C++ library 

can be built from sources with enabled exceptions, which would help reduce the binary footprint.

If an exception is not caught, std::terminate_handler will be called. We can replace the default 

handler using the std::set_terminate function as in the following example:

    std::set_terminate([]() {

        printf("My terminate handler!\r\n");

        while(true){}

    });

In the preceding example, we provided a lambda as a terminate handler. As an exercise, try to 

access the array from the previous example with an index that is out of range, but out of a try 

block. This should trigger the terminate handler and make a call to the lambda we passed to the 

std::set_terminate function.
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Exceptions are propagated up the call stack. Let us go through the following example to demon-

strate exception propagation:

template <class T, std::size_t N> struct ring_buffer {

  std::array<T, N> arr;

  std::size_t write_idx = 0;

  void push(T t) {

    arr.at(write_idx++) = t;

  }

};

int main()

{

    ring_buffer<int, 4> rb;

    try {

      for(int i = 0; i < 6; i++) {

        rb.push(i);

      }

    }

    catch(std::out_of_range &e) {

      printf("Ring buffer out of range!\r\n");

    }

    return 0;

}

The preceding example is based on a ring buffer from previous chapters that uses std::array 

as an underlying container. In the push method, it doesn’t check the write index, meaning that 

the array’s at method will throw an exception if we call the push method more than N times. An 

exception is thrown in the push method, where there is no try-catch block, and it gets caught 

only in the main function in the catch block.
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You can run the preceding example in the Renode simulator using the following instructions. 

Start Visual Studio Code, attach it to the running container, open Chapter07/error_handling 

project as described in Chapter 4, and run the following commands in the Visual Studio Code 

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
exceptions.cpp

$ cmake --build build --target run_in_renode

Exception propagation is useful for the type of errors that we don’t want to propagate between 

the software layers manually using error codes. However, the problem with exceptions is that 

they are not visible from function declarations as is the case with error codes. We need to rely on 

good documentation to know which function throws an error and where those errors are handled.

There is a saying that exceptions are used for exceptional errors that are very rare. But what are 

exceptional errors? That depends on the library, application, and use case. It is hard to generalize. 

A failed read to the accelerometer may be a recoverable error that is solved by resetting it. We 

can throw an exception on a failed I2C bus communication, and the upper layer that catches this 

error may decide to try resetting the accelerometer.

Failing to control boost voltage regulator output by DAC may also be recoverable, but we may 

want to terminate the program as we are implementing a medical device and that may be the best 

action possible to prevent any damage to a user. In this case, we want to react as fast as possible 

and exception propagation and stack unwinding are probably not desirable so we will rely on a 

global handler or asserts instead.

Exceptions come with a price, both in flash and RAM memory consumption, and the execution 

time can’t always be guaranteed, which is a problem if we are working with hard real-time sys-

tems. But they also solve the problem of error propagation and enforce error handling. If there is 

not a catch clause for a specific type, std::terminate_handler will be called, and the program 

will not continue with the execution.

Error codes and exceptions can co-exist, and they often do. Embedded C++ projects often use C 

libraries, or legacy C++ code, which often uses error codes. We can benefit from exceptions by 

using them for very rare errors, adding additional robustness to our firmware. Still, the decision 

of whether to use them is influenced by available memory resources and the type of project we 

are working on.

Next, we will cover the C++ std::optional and std::expected template classes, which are used 

as return types from functions.
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std:: optional and std::expected
C++17 introduced std::optional, a template class that either has a value or has nothing. This 

is useful for situations where a function may or may not return a value. To better understand it, 

let’s go through the following example:

#include <cstdio>

#include <optional>

struct sensor {

    struct data {

        int x;

        int y;

    };

    static inline bool ret_val = true;

    static std::optional<data> get_data() {

        ret_val = !ret_val;

        if(ret_val) {

            return data{4, 5};

        }

        else {

            return std::nullopt;

        }

    }

};

int main()

{

    const auto get_data_from_main = [] () {

        auto result = sensor::get_data();

        if(result) {

            printf("x = %d, y = %d\r\n", (*result).x, (*result).y);

        }

        else {

            printf("No data!\r\n");

        }

    };

    get_data_from_main();
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    get_data_from_main();

    return 0;

}

In the preceding example, we have a sensor struct with the get_data method, which returns a 

value if some conditions are met. Otherwise, it doesn’t return it. The sensor is not in an erroneous 

state, it just doesn’t have data ready yet. For this, we are using std::optional<data> to declare 

that the sensor may or may not return the data struct. We used the ret_val bool to simulate 

data being ready at every second call of the get_data function.

In the main, we created the get_data_from_main lambda, which makes a call to the sensor’s 

get_data. The std::optional<data> return value is converted to a bool in the if statement. If 

it is converted to true, it means it holds data, else it holds nothing. We access the data type by 

dereferencing the result object.

C++ 23 introduced std::expected<T, E>, a template class that either holds an expected object 

of class T or an unexpected object of class E. To understand this better, let us go through the 

following example:

#include <cstdio>

#include <expected>

struct ble_light_bulb {

    enum class error {

        disconnected,

        timeout

    };

    struct config {

        int r;

        int g;

        int b;

    };

    bool ret_val;

    std::expected<config, error> get_config() {

        ret_val = !ret_val;

        if(ret_val) {

            return config {10, 20, 30};

        }

        else {
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            return std::unexpected(error::timeout);

        }

    }

};

int main()

{  

    ble_light_bulb bulb;

    const auto get_config_from_main = [&bulb]() {

        auto result = bulb.get_config();

        if(result.has_value()) {

            auto conf = result.value();

            printf("Config r %d, g %d, b %d\r\n", conf.r, conf.g, conf.b);

        } else {

            auto err = result.error();

            using bulb_error = ble_light_bulb::error;

            if(err == bulb_error::disconnected) {

                printf("The bulb is disconnected!\r\n");

            }

            else if(err == bulb_error::timeout) {

                printf("Timeout!\r\n");

            }

        }

    };

    get_config_from_main();

    get_config_from_main();

    return 0;

}

In the preceding example, we have a ble_light_bulb struct, a BLE (Bluetooth Low Energy) light 

bulb, with the get_config method, which reads some config data over the BLE connection from 

the bulb. This method returns config, or an error. In main, we defined the get_config_from_main 

lambda, which calls get_config on the ble_light_bulb object. We use the has_value method 

on the expected returned object to check if it holds an expected value. We use value methods to 

access the expected value or the error method to access the error object.
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You can run the preceding example in the Renode simulator using the following instructions. 

Start Visual Studio Code, attach it to the running container, open Chapter07/error_handling 

project as described in Chapter 4, and run the following commands in the Visual Studio Code 

terminal, or run them directly in the container terminal:

$ cd Chapter07/error_handling

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
expected.cpp

$ cmake --build build --target run_in_renode

Summary
In this chapter, we analyzed different error-handling strategies in C++. We went through error 

codes, global handlers, asserts, exceptions, std::optional, and std::expected. We learned the 

pros and cons of each and in which situations it makes sense to apply them.

In the next chapter, we will cover templates in more detail.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems


Part 3
C++ Advanced Concepts

Building on the fundamentals, this part introduces more advanced concepts such as templates, 

including static polymorphism and compile-time computation. It also guides you through increas-

ing type safety in C++ and writing expressive code using lambdas. These advanced techniques 

are taught through practical examples.

This part has the following chapters:     

•	 Chapter 8, Building Generic and Reusable Code with Templates

•	 Chapter 9, Improving Type-Safety with Strong Types

•	 Chapter 10, Writing Expressive Code with Lambdas

•	 Chapter 11, Compile-Time Computation





8
Building Generic and Reusable 
Code with Templates

We have used class templates in previous examples in this book without explaining them in 

detail. You should by now have a basic understanding of templates in C++ and know how to 

use template container classes from the standard library to specialize containers with different 

underlying types. We have also covered the std::optional and std::expected template classes, 

which we can use to handle different return types from functions.

As you have already seen, templates are used heavily in the C++ standard library. They allow us 

to implement the same functionality for different types, making our code reusable and generic, 

which is one of the strengths of C++. Templates are an extremely complex topic; entire books have 

been written on templates and metaprogramming in C++. This chapter will help you understand 

templates in C++ in more detail.

In this chapter, we’re going to cover the following main topics: 

•	 Template basics

•	 Metaprogramming

•	 Concepts

•	 Compile-time polymorphism
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architec-

ture. This will allow you to see standard output and better observe the code’s behavior. As we are 

using modern C++, make sure to select C++23 standard, by adding -std=c++23 in the compiler 

options box.

Compiler Explorer makes it easy to try the code, tweak it, and immediately see how it affects the 

output and generated assembly code. The examples from this chapter are available on GitHub 

(https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter08).

Template basics
One definition of the word “template” is “a gauge, pattern, or mold (such as a thin plate or board) 

used as a guide to the form of a piece being made. “ This definition can be applied to templates 

in C++.

In C++, templates serve as patterns or molds for functions and classes, allowing the creation of 

actual functions and classes. From this perspective, templates are not real functions or types 

themselves; rather, they act as guides for generating concrete functions and types. To better 

understand this definition, let us take a look at the following code sample:

#include <cstdio>

template<typename T>

T add(T a, T b) {

   return a + b;

}

int main() {

    int result_int = add(1, 4);

    float result_float = add(1.11f, 1.91f);

    printf("result_int = %d\r\n", result_int);

    printf("result_float = %.2f\r\n", result_float);

    return 0;

}

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter08
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In this example, we have a template function, add, with the template type parameter T. In the 

main function, we see two calls to the add function:

•	 The first one has integers as arguments and a return value stored in result_int

•	 The second one has float arguments and a return value stored in the result_float float 

variable

Now, we previously said that template types and functions are not actual types and functions, so 

how can we make a call to the template function if it’s not a real function?

Making a call to the template function
In this example, when the compiler sees a call to add a template function, it deduces the template 

argument and replaces the template parameter, in this case, type T, with type int in the first call 

and float in the second call to add. After argument deduction, the template is instantiated; that 

is, the compiler creates two instances of the add function: one with integers as arguments and 

one with floats. We can see this in the assembly output of the preceding example shown here:

_Z3addIiET_S0_S0_:

        push    rbp

        mov     rbp, rsp

        mov     DWORD PTR [rbp-4], edi

        mov     DWORD PTR [rbp-8], esi

        mov     edx, DWORD PTR [rbp-4]

        mov     eax, DWORD PTR [rbp-8]

        add     eax, edx

        pop     rbp

        ret

_Z3addIfET_S0_S0_:

        push    rbp

        mov     rbp, rsp

        movss   DWORD PTR s[rbp-4], xmm0

        movss   DWORD PTR [rbp-8], xmm1

        movss   xmm0, DWORD PTR [rbp-4]

        addss   xmm0, DWORD PTR [rbp-8]

        pop     rbp

        ret
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In the preceding assembly output, we see there are two instances of the add function: _Z3addIiET_

S0_S0_, accepting integers, and _Z3addIfET_S0_S0_, accepting floats. The compiler instantiated 

these two functions from the add template function, after it deduced template arguments on the 

call site of this function. This is the basic working principle of templates in C++.

In the example of the add template function, the compiler will instantiate a new function for 

every type for which there is a defined operator+. So, what would happen if we tried to call the 

add template function on a type for which there is no defined operator+? Let’s take a look at the 

following example:

struct point {

    int x;

    int y;

};

int main() {

    point a{1, 2};

    point b{2, 1};

    auto c = add(a, b);

    return 0;

}

In the preceding example, we defined a point struct, for which there is no defined operator+, 

and we made a call to the add template function. This will result in a compiler error similar to 

the one shown here:

<source>: In instantiation of 'T add(T, T) [with T = point]':

<source>:25:17:   required from here

   25 |     auto c = add(a, b);

      |              ~~~^~~~~~

<source>:6:13: error: no match for 'operator+' (operand types are 'point' 
and 'point')

    6 |    return a + b;

      |           ~~^~~
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So, what happened? When the compiler tried to instantiate a function using the add template with 

point as type T, the compilation failed due to no match for 'operator+' (operand types are 

'point' and 'point'). We can solve this by defining operator+ for the point struct as follows:

struct point {

    int x;

    int y;

    point operator+(const point& other) const {

        return point{x + other.x, y + other.y};

    }

    void print() {

        printf("x = %d, y = %d\r\n", x, y);

    }

};

In the preceding implementation, we defined operator+ for the point struct, and we also defined 

the print function, which will help us to print the point. After this change, we can compile the 

example successfully.

What if we wanted, for some reason, that add function when used with type point behaves dif-

ferently than just applying the operator+? Let’s say we want to increment both x and y by 1 after 

summation. We can use template specialization for this.

Template specialization
Template specialization allows us to provide the compiler with the implementation of a tem-

plate function for a specific type, as in the following example of specializing the add function for 

type point:

template<>

point add<point>(point a, point b) {

   return point{a.x+b.x+1, a.y+b.y+1};

}

In this case, when the add function is called with arguments of type point, the compiler skips the 

generic template instantiation and uses this specialized version instead. This allows us to custom-

ize the behavior of the function specifically for point objects, adding an extra 1 to each coordinate 

when two point instances are added together. Let us take a look at the full main function now:

int main() {

    point a{1, 2};
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    point b{2, 1};

    auto c = add(a, b);

    c.print();

    static_assert(std::is_same_v<decltype(c), point>);

    return 0;

}

If we run the example with template specialization from the previous step, we will get the fol-

lowing output:

x = 4, y = 4

The compiler used function specialization for the point type. Template specialization makes tem-

plates a flexible tool, allowing us to provide compilers with custom implementations when needed.

In the preceding example, we can see that for variable c, we used auto as a type specifier. The 

auto keyword was introduced in C++11, and when used, the compiler deduces the actual type of 

a variable from the initialization expression. In order to confirm that the deduced type of variable 

c is point, we used static_assert, which performs compile-time assertion checking.

As the argument of static_assert, we use a type trait from the metaprogramming library, 

std::is_same_v, which checks whether two types are identical and evaluates to true if they are. 

We determine the type of c using the decltype specifier, which retrieves the type of an expres-

sion at compile time. This allows us to verify that the type deduced for c is indeed point. If this 

assertion fails, the compiler will generate an error.

Template metaprogramming
Template metaprogramming involves using templates to write code that generates different 

functions, types, and constants at compile time based on the types used in the template arguments. 

Template metaprogramming is an advanced technique heavily utilized in modern C++ libraries. 

It may be overwhelming, so it is perfectly fine if it appears to be hard to understand. Take this as 

merely an introduction and an exploration of this interesting topic.

Let us go back to the example of the add template function. Is there something we can do if we want 

to enforce that this template function is used only for arithmetic types such as integers and floats?

<type_traits> header from metaprogramming library provides us with the std::enable_if 

template type, which accepts two parameters, a Boolean and a type. If a Boolean is true, the  

resulting type will have a public typedef member, type. Let’s take a look at the following example:
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#include <type_traits>

template<typename T>

std::enable_if<true, T>::type

add(T a, T b) {

   return a + b;

}

In the preceding example, we used std::enable_if in place of the return type of the add template 

function. As we set the Boolean argument to true, it will have a public typedef type, T, meaning 

that the return type of the add function template will be T.

We will expand this example using type trait class template std::is_arithmetic<T>, which will 

have a public Boolean named value set to true if T is an arithmetic type. The preceding example 

will result in the following code:

template<typename T>

std::enable_if<std::is_arithmetic<T>::value, T>::type

add(T a, T b) {

   return a + b;

}

In the preceding example, instead of hardcoding true as the condition for std::enable_if, we 

use the std::is_arithmetic<T>::value. Let’s take a look at the main function using this template 

function and the point type from the previous example:

int main() {

    auto a = add(1, 2); // OK

    auto b = add(1.1, 2.1); // OK

    point p_a{1, 2};

    point p_b{2, 1}; 

    auto p_c = add(p_a, p_b); // compile-error

    return 0;

}

If we try to compile this code, the compilation will fail with a lengthy error message containing 

the following:

<source>: In function 'int main()':

<source>:30:17: error: no matching function for call to 'add(point&, 
point&)'

  30 |     auto c = add(p_a, p_b); // compile-error
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     |              ~~~^~~~~~~~~~

<source>:30:17: note: there is 1 candidate

<source>:19:1: note: candidate 1: 'template<class T> typename std::enable_
if<std::is_arithmetic<_Tp>::value, T>::type add(T, T)'

  19 | add(T a, T b) {

     | ^~~

<source>:19:1: note: template argument deduction/substitution failed:

<source>: In substitution of 'template<class T> typename std::enable_
if<std::is_arithmetic<_Tp>::value, T>::type add(T, T) [with T = point]':

<source>:30:17:   required from here

  30 |     auto c = add(p_a, p_b); // compile-error

     |              ~~~^~~~~~~~~~

<source>:19:1: error: no type named 'type' in 'struct std::enable_
if<false, point>'

  19 | add(T a, T b) {

     | ^~~

The preceding compiler error looks intimidating, and it is hard to read. This is one of those things 

that templates are notorious for. Before we tackle this concern, let’s focus on analyzing what 

happened in this case.

Template argument deduction/substitution failed as std::is_arithmetic<point>::value re-

sults in false, meaning that the std::enable_if template type will not have a public typedef 

type T. Effectively, any attempt at the usage of the add template function in this example with 

a type that’s not arithmetic will result in a compiler error, even if operator+ is defined for that 

type. We can think of std::enable_if as an enabler or disabler of a template function in C++.

Let’s modify the add template function so that it prints the result of the sum operation. As both in-

tegers and floats are arithmetic types, we need to treat them differently. We could use std::enable_

if and create two template functions using the std::is_integral and std::is_floating_point 

type traits as in the following example:

template<typename T>

std::enable_if<std::is_integral<T>::value, T>::type

add(T a, T b) {

    T result = a + b;

    printf("%d + %d = %d\r\n", a, b, result);
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    return result;

}

template<typename T>

std::enable_if<std::is_floating_point<T>::value, T>::type

add(T a, T b) {

    T result = a + b;

    printf("%.2f + %.2f = %.2f\r\n", a, b, result);

    return result;

}

As you remember, std::enable_if is a template enabler or disabler, meaning it will enable the 

first template function for integer types and print them using printf and the %d format specifier. 

Template substitution will fail for the second template function with integer types, but this will 

not be treated as an error as there is a valid function candidate for integer arguments from the 

first template. This principle is called Subsitution Failure Is Not An Error (SFINAE). For the float-

ing-point types, the first template function will be disabled, but the second one will be enabled.

Now, the example functions we used are very simple, but let’s for a moment pretend that the 

add function template is doing a heavy-lifting task and that between integer and floating-point 

versions, the only difference is how we print the result. So, if we used two different function tem-

plates, we would copy a lot of the same code. We can avoid this by using constexpr if, which will 

enable or disable certain paths in code at compile time. Let us take a look at a modified example:

std::enable_if_t<std::is_arithmetic_v<T>, T>

add(T a, T b) {

    T result = a + b;

    if constexpr (std::is_integral_v<T>) {

        printf("%d + %d = %d\r\n", a, b, result);

    } else if constexpr (std::is_floating_point_v<T>) {

        printf("%.2f + %.2f = %.2f\r\n", a, b, result);

    }

    return a + b;

}
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In the preceding example, we used the constexpr if statement to enable certain paths of the 

program based on the compile-time evaluation of the std::is_integral_v<T> and std::is_

floating_point_v<T> expressions. constexpr if was introduced in C++17. You can also notice 

that we used aliases for type traits as std::enable_if_t<T>, which is equivalent to std::enable_

if<T>::type, and std::is_floating_point_v<T>, which is equivalent to std::is_floating_

point<T>::value.

In this example, we used type traits and std::enable_if to enable the add function template 

only for arithmetic types. C++20 introduced concepts, which we can use to put restraints on 

template types.

Concepts
Concepts are named sets of template parameter requirements. They are evaluated at compile 

time and are used during overload resolution to select the most appropriate function overload; 

that is, they are used to determine which function template will be instantiated and compiled.

We will create a concept for arithmetic types and use it in our add template function, as follows:

template<typename T>

concept Arithmetic = std::is_arithmetic_v<T>;

template<Arithmetic T>

T add(T a, T b) {

    T result = a + b;

    if constexpr (std::is_integral_v<T>) {

        printf("%d + %d = %d\r\n", a, b, result);

    } else if constexpr (std::is_floating_point_v<T>) {

        printf("%.2f + %.2f = %.2f\r\n", a, b, result);

    }

    return a + b;

}

In the preceding code, we created the Arithmetic concept and used it in the add function template 

to put requirements on the T template type. The add template function is now easier to read. It is 

visible from the template declaration that type T must meet the requirements of the Arithmetic 

concept, which makes the code easier to read and comprehend.
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Concepts not only make the code easier to read but also improve readability of compiler errors. 

If we tried to call the function template add on type point, we would now get an error similar to 

the following one:

<source>: In function 'int main()':

<source>:41:17: error: no matching function for call to 'add(point&, 
point&)'

  41 |     auto c = add(p_a, p_b); // compile-error

     |              ~~~^~~~~~~~~~

<source>:41:17: note: there is 1 candidate

<source>:22:3: note: candidate 1: 'template<class T>  requires  
Arithmetic<T> T add(T, T)'

  22 | T add(T a, T b) {

     |   ^~~

<source>:22:3: note: template argument deduction/substitution failed:

<source>:22:3: note: constraints not satisfied

<source>: In substitution of 'template<class T>  requires  Arithmetic<T> T 
add(T, T) [with T = point]':

<source>:41:17:   required from here

  41 |     auto c = add(p_a, p_b); // compile-error

     |              ~~~^~~~~~~~~~

<source>:18:9:   required for the satisfaction of 'Arithmetic<T>' [with T 
= point]

<source>:18:27: note: the expression 'is_arithmetic_v<T> [with T = point]' 
evaluated to 'false'

  18 | concept Arithmetic = std::is_arithmetic_v<T>;

     |                      ~~~~~^~~~~~~~~~~~~~~~~~

The preceding compiler error is way easier to read and understand what happened than the one 

we had previously when we didn’t use concepts. We can easily trace the origin of the error to 

the fact that constraints imposed by the Arithmetic concept are not satisfied for the point type.

Next, we will move on to discuss compile-time polymorphism and see how we can utilize concepts 

to help us enforce strong interfaces.
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Compile-time polymorphism
In Chapter 5, we discussed dynamic, or runtime, polymorphism. We used it to define an interface 

for uart, which was implemented by the uart_stm32 class. The gsm_lib class has a dependency 

on the uart interface only, not on the concrete implementation, which is contained in uart_stm32. 

This is called loose coupling and allows us to have portable code for the gsm_lib class.

We can easily supply gsm_lib with another uart interface implementation on a different hard-

ware platform. This principle is called dependency inversion. It says that high-level modules 

(classes) shouldn’t depend on low-level modules and that both should depend on abstractions 

(interfaces). We can implement this principle by using inheritance and virtual functions in C++.

Virtual functions result in indirection, causing the runtime overhead and increased binary size 

needed for their implementation. They allow runtime dispatching of function calls, but they 

come with a price. In embedded applications, we usually know all our types, meaning that we can 

use templates and overload resolution for the static or compile-time dispatch of function calls.

Using Class Templates for Compile-Time Polymorphism
We can make gsm_lib a class template that has one parameter that we will use for the uart type, 

as shown in the following example:

#include <span>

#include <cstdio>

#include <cstdint>

class uart_stm32 {

public:

    void init(std::uint32_t baudrate = 9600) {

        printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

    }

    void write(std::span<const char> data) {

        printf("uart_stm32::write: ");

        for(auto ch: data) {

            putc(ch, stdout);

        }

    }
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};

template<typename T>

class gsm_lib{

public:

    gsm_lib(T &u) : uart_(u) {}

    void init() {

        printf("gsm_lib::init: sending AT command\r\n");

        uart_.write("AT");

    }

private:

    T &uart_;

};

int main() {

    uart_stm32 uart_stm32_obj;

    uart_stm32_obj.init(115200);

    gsm_lib gsm(uart_stm32_obj);

    gsm.init();

    return 0;

}

In the preceding example, the compiler will instantiate the gsm_lib template class using the 

uart_stm32 class as a template argument. This will result in using a reference to an object of the 

uart_stm32 class in the gsm_lib code. We can still easily reuse gsm_lib by using it with a differ-

ent type that provides all the methods needed to compile it. In this example, the type that used 

with the gsm_lib class template must provide a write method accepting std::span<char> as 

its parameter. But this also means that any type that has such a method will allow us to compile 

the code.

Dynamic polymorphism requires interface classes implemented in concrete classes and used in 

high-level code. It makes intended behavior of the code clear when reading it. Can we do some-

thing similar using templates? It turns out we can. We can use the curiously recurring template 

pattern (CRTP) to implement compile-time subtype polymorphism.
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Curiously recurring template pattern (CRTP)
CRTP is a C++ idiom where the derived class uses a template class instantiated with itself as a 

base class. Yes, it sounds confusing, so let’s jump into the code to better understand this:

template<typename U>

class uart_interface {

public:

    void init(std::uint32_t baudrate = 9600) {

       static_cast<U*>(this)->initImpl(baudrate);

    }

};

class uart_stm32 : public uart_interface<uart_stm32> {

public:

    void initImpl(std::uint32_t baudrate = 9600) {

        printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

    }

};

The preceding code implements CRTP. The uart_stm32 derived class inherits from the uart_

interface class template instantiated with the uart_stm32 class itself. The base class template 

exposes an interface from which it can access the derived class using static_cast on this (pointer 

to itself). It provides the init method, which calls initImpl on the object of the uart_stm32 class.

CRTP allows us to define our interface in the base class and implement it in a derived class, similar 

to the inheritance mechanism we are using for runtime polymorphism. The remaining part to 

ensure that this interface is used in gsm_lib is to create type constraints using concepts, as follows:

template<typename T>

concept TheUart = std::derived_from<T, uart_interface<T>>;

The preceding code is a concept that we will use to restrain types accepted by the gsm_lib class 

template. It will accept only types that are derived from the uart_interface class template in-

stantiated by that type itself. The following is the full code example:

#include <span>

#include <cstdio>

#include <cstdint>
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template<typename U>

class uart_interface {

public:

    void init(std::uint32_t baudrate = 9600) {

       static_cast<U*>(this)->initImpl(baudrate);

    }

    void write(std::span<const char> data) {

       static_cast<U*>(this)->writeImpl(data);

    }

};

class uart_stm32 : public uart_interface<uart_stm32> {

public:

    void initImpl(std::uint32_t baudrate = 9600) {

        printf("uart_stm32::init: setting baudrate to %d\r\n", baudrate);

    }

    void writeImpl(std::span<const char> data) {

        printf("uart_stm32::write: ");

        for(auto ch: data) {

            putc(ch, stdout);

        }

    }

};

template<typename T>

concept TheUart = std::derived_from<T, uart_interface<T>>;

template<TheUart T>

class gsm_lib{

public:

    gsm_lib(T &u) : uart_(u) {}

    void init() {

        printf("gsm_lib::init: sending AT command\r\n");

        uart_.write("AT");

    }

private:

    T &uart_;
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};

int main() {

    uart_stm32 uart_stm32_obj;

    uart_stm32_obj.init(115200);

    gsm_lib gsm(uart_stm32_obj);

    gsm.init();

    return 0;

}

In the preceding code, we used CRTP to implement compile-time or static subtype polymorphism. 

uart_stm32 is a concrete class that depends on the interface defined by the uart_interface class 

template. We used the TheUart concept to constrain high-level code in gsm_lib on types derived 

from uart_interface. We achieved dependency inversion, and it is clearly defined thanks to 

CRTP and concepts.

The major benefit of compile-time polymorphism over inheritance (runtime polymorphism) is 

static binding; that is, there are no virtual functions. This comes at the price of template syntax, 

which may make the code harder to read and understand.

Summary
In this chapter, we covered template basics, template metaprogramming, concepts, and com-

pile-time polymorphism. While templates are an advanced topic that encompasses many deeper 

concepts, this chapter aims to serve as a solid starting point for new learners. By understanding 

the fundamentals covered here, you should be well equipped to explore more complex aspects 

of templates and leverage their full potential in embedded systems programming.

In the next chapter, we will discuss type safety in C++.



9
Improving Type-Safety with 
Strong Types

C++ is a statically typed language, meaning that every expression is assigned a type at a compile 

time, either by a developer (in most cases), or deduced by a compiler when using the keyword 

auto. Still, this doesn’t make it a type-safe language.

Both C++ and C allow functions with a variable number of arguments (va_arg), or variadic 

functions and type casting, and support implicit type conversion. These low-level capabilities 

that are associated with the performance of C++ and C are often the source of bugs in programs. 

In this chapter, we will cover good practices used to increase type-safety in C++.

Type-safety is an important aspect of a program in safety-critical systems. That’s why safety 

coding standards provided by organizations such as MISRA and AUTOSAR restrain the usage of 

features that violate type-safety. In this chapter, we’re going to cover the following main topics:

•	 Implicit conversions

•	 Explicit conversions

•	 Strong types
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architecture. 

This will allow you to see standard output (stdio) results and better observe the code’s behavior. 

As we are using a lot of modern C++ features, make sure to select the C++23 standard, by adding 

-std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects 

the output and generated assembly. Most of the examples can also be run in the Renode simulator 

on Arm Cortex-M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter09).

Implicit conversion
When you make a call to a function that expects an integer parameter, but you pass a float as 

an argument, the compiler will happily compile the program. Similarly, if you pass an array of 

integers to a function that expects a pointer to an integer, the program will also compile. These 

scenarios have become so normalized in both C and C++ that they are often taken for granted 

without considering what’s happening during the compilation process.

In both described scenarios, the compiler is performing implicit conversions. It converts the 

float to an integer in the first scenario and passes a pointer to the first element of the array in the 

second scenario, a process known as array-to-pointer decay.

While implicit conversions make the code less verbose and easier to write, they also open the 

door to a range of type-safety-related issues. Converting a float to an integer leads to precision 

loss, and assuming that an array always behaves like a pointer can lead to misinterpretations of 

the array’s bounds, potentially causing buffer overflows or other memory issues.

Implicit conversion is performed in the following cases:

•	 When a function is called with an argument of a type different than the parameter. For 

example:

#include <cstdio>

void print_int(int value) {

    printf("value = %d\n", value);

}

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter09
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter09
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int main() {

    float pi = 3.14f;

    // int implicitly converts to float

    print_int(pi);

    return 0;

}

•	 When a value specified in a return statement is of a different type than specified by a 

function declaration. For example:

int get_int() {

    float pi = 3.14;

    // float implicitly converts to int

    return pi;

}

•	 In expressions with binary operators provided with operands of different arithmetic types. 

For example:

#include <cstdio>

int main() {

    int int_value = 5;

    float float_value = 4.2;

    // int converts to float

    auto result = int_value + float_value;

    printf("result = %f\n", result);

    

    return 0;

}

•	 In a switch statement to an integral type. For example:

char input = 'B';

// implicit conversion from char to int

switch (input) {

    case 65:

        printf("Input is 'A'\n");
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        break;

    case 66:

        printf("Input is 'B'\n");

        break;

    default:

        printf("Unknown input");

}

•	 In an if statement, types can be converted to a bool type. For example:

#include <cstdio>

int main() {

    int int_value = 10;

    // int implicitly converts to bool

    if (int_value) {

        printf("true\n");

    }

    return 0;

}

There are different types of implicit conversion that are handled by a compiler, and some of the 

most important are:

•	 Numeric promotions and conversions

•	 Array to pointer conversion

•	 Function to pointer conversion

Next, we will discuss the above implicit conversions with examples.

Numeric promotions and conversions
Arithmetic types can be promoted or converted to other arithmetic types. Type promotion will 

not change the value or lose precision. std::uint8_t can be promoted to int, or float can be 

promoted to double. If a type that is being converted can fit entirely to the destination type, 

without loss of precision, it is being promoted.
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Arithmetic operators do not accept types smaller than int. Arithmetic types can be promoted 

when passed as operands to arithmetic operators. There are specific rules for promotions of 

integral and floating-point types based on their type:

•	 Boolean promotion: bool is promoted to int with value 0 if set to false, and 1 if true

•	 Other integral types, including bitfields, are converted to the smallest type from the 

following list that can represent all the values of the converted type:

•	 int

•	 unsigned int

•	 long

•	 unsigned long

•	 long long

•	 unsigned long long

•	 A float can be promoted to double.

To better understand integer promotion rules, we will go over the next example:

#include <cstdint>

#include <type_traits>

int main() {

    std::uint8_t a = 1;

    std::uint16_t b = 42;

    auto res1 = a + b;

    static_assert(std::is_same_v<int, decltype(res1)>);

    return 0;

}

In the above example, we added uint8_t and uint16_t. According to the promotion rules, both 

types will be promoted to int, as they can be fully represented by int. The result of the adding 

is stored in the variable res1, which is declared as auto, meaning that the compiler will deduce 

its type. We expect it to be an int and we verify that using static_assert and std::is_same_v.

In this example, both types were promoted to the same type. If we had different types after 

promotion, then they would be converted to a common type under the rules of usual arithmetic 

conversion.
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The goal of the usual arithmetic conversion is to yield types to a common type, which is also the 

type of the result. There are a couple of rules to usual arithmetic conversion:

•	 If both types are signed or unsigned integers, then the common type is the type of greater 

integer conversion rank. The ranks are listed below in decreasing order (the ranks of 

unsigned integers correspond to those of matching signed):

•	 long long

•	 long

•	 int

•	 short

•	 signed char

•	 If one of the types is a signed integer and the other one is unsigned then the following 

rules apply:

•	 If the integer conversion rank of the unsigned type is greater than or equal to the 

signed type, then the common type is that of the unsigned type.

•	 Otherwise, if the signed type can represent all the values of the unsigned type, the 

common type is that of the signed type.

•	 Otherwise, the common type is an unsigned integer of the type of the signed 

integer.

•	 If one of the types is a floating type and the other is an integer, the integer is converted 

to that floating type.

•	 If both types are the floating type but of different floating-point conversion ranks, the 

type with the lower conversion rank is converted to the other one. The floating-point 

conversion rank is listed below in decreasing order:

•	 long double

•	 double

•	 float



Chapter 9 177

Let’s go through the following example to better understand the rules of usual arithmetic 

conversion:

#include <type_traits>

int main() {

    struct bitfield{

        long long a:31;

    };

    bitfield b {4};

    int c = 1;

    auto res1 = b.a + c;  

    static_assert(sizeof(int) == 4);

    static_assert(sizeof(long long) == 8);

    static_assert(std::is_same_v<int, decltype(res1)>);

    long e = 5;

    auto res2 = e - b.a;

    static_assert(std::is_same_v<long, decltype(res2)>);

    return 0;

}

In the above example, we have a bitfield of 31 bits with an underlying type of long long. We 

first add b.a and variable c of type int. If we are on a platform where the size of the int is 4 bytes, 

the bitfield will be promoted to the int, even though the underlying type long long has a size 

of 8 bytes. The promoted bitfield will be added to int c, so the result of this operation will also be 

int, which we verify by checking the type of res1 using std::is_same_v.

In the second part of the example, we subtract the bitfield from long e. In this case, the bitfield is 

first promoted to int; then, according to the rules of usual arithmetic conversion, it is converted 

to long, meaning that the resulting type will also be long.
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You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_usual_arithmetic_conversion.
cpp"

$ cmake --build build --target run_in_renode

The fact that the program builds successfully is enough to confirm the usual arithmetic conversion 

results, as we used static_assert to verify it.

Now, let us take a look at an example whose result may be surprising:

#include <cstdio>

int main() {

    int a = -4;

    unsigned int b = 3;

    if(a + b > 0) {

        printf("%d + % u is greater than 0\r\n", a, b);

    }

    return 0;

}

If you run this example, the expression within the if clause will evaluate to true. As per the 

rules of usual arithmetic conversion, the signed int a will be converted to the unsigned int, 

meaning that the expression a + b will indeed be greater than 0. Mixing unsigned and signed 

types in arithmetic expressions can lead to undesired behavior and potential bugs due to implicit 

conversions.

We can use –Wconversion and -Wsign-conversion compiler flags with GCC to make it raise a 

warning when implicit conversion may change a value and sign. Still, mixing signed and unsigned 

types in arithmetic expressions should be avoided as it can result in wrong results.

Next, we will discuss array-to-pointer conversion and its implications.

Array-to-pointer conversion
An array can be implicitly converted to a pointer. The resulting pointer points to the first element 

of the array. Many C and C++ functions that work on arrays of data are designed with pointer 

and size parameters. These interfaces are based on contract design. The contract is the following:

•	 A caller will pass a pointer that points to the first element of the array

•	 A caller will pass the size of the array
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This is a simple contract, but there is no way to enforce it. Let’s take a look at the following simple 

example:

#include <cstdio> 

void print_ints(int * arr, std::size_t len) {

    for(std::size_t i = 0; i < len; i++) {

        printf("%d\r\n", arr[i]);

    }

}

 int main() { 

    int array_ints[3] = {1, 2, 3};

    print_ints(array_ints, 3);

    return 0; 

}

In the above example, we have the print_ints function with arr, a pointer to an int, and len, 

a std::size_t parameter. In the main function, we call the print_ints function by passing 

array_ints, an array of 3 integers, and 3 as arguments. The array array_ints will be implicitly 

converted to a pointer that points to its first element. There are a couple of potential issues with 

the print_ints function:

•	 It expects that the pointer we pass to it is valid. It doesn’t verify that.

•	 It expects that the argument it receives for the len parameter is the actual size of the array 

it operates on. A caller could pass a size that may cause out-of-bounds access.

•	 As it operates directly on a pointer, there is always a chance of out-of-bound access if 

pointer arithmetic is used in the function.

To eliminate these potential issues, in C++, instead of using a pointer to work on an array of data, 

we can use the class template std::span. It is a wrapper for a contiguous sequence of objects, 

with the first element of the sequence at position zero. It can be constructed from a C-style array, 

it has the size method, and we can use range-based for loops on it. Let’s write the previous 

example using the std::span instead of the pointer:

#include <cstdio> 

#include <span>

void print_ints(const std::span<int> arr) {

    for(int elem: arr) {

        printf("%d\r\n", elem);
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    }

}

int main() { 

    int arr[3] = {1, 2, 3};

    print_ints(arr);

    return 0; 

}

In the above example, we can see that the function print_ints looks much simpler now. It accepts 

std::span of integers and it uses a range-based for loop to iterate over the elements. On the call 

site, we now just pass arr, an array of 3 integers. It is implicitly converted to std::span.

The class template std::span also has the size method, operator [], and begin and end iterators, 

meaning we can use it in standard library algorithms. We can also construct a subspan from 

span. It can be constructed from C-style arrays, but also from containers such as std::array and 

std::vector. It is a great solution to potential issues of interfaces that usually rely on pointer 

and size parameters.

Function-to-pointer conversion
A function can be implicitly converted to a pointer to that function. The following example 

demonstrates this:

#include <cstdio> 

#include <type_traits>

void print_hello() {

    printf("Hello!\r\n");

}

int main() { 

    void(*fptr)() = print_hello;

    fptr();

    fptr = &print_hello;

    (*fptr)();

    static_assert(std::is_same_v<decltype(fptr), void(*)()>);
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    static_assert(std::is_same_v<decltype(print_hello), void()>);

    return 0; 

}

In the example above, we assign the function print_hello to a function pointer fptr. In C++, we 

don’t need to use the address-off operator with a function name to assign it to a function pointer. 

Also, we don’t need to dereference a function pointer when making a call to a function through it. 

Still, print_hello and fptr are two different types and we confirm this using the static_assert 

and is_same type traits.

Implicit conversions in C++ make writing the code easier. They can sometimes lead to undesired 

behavior and potential issues with our program. To mitigate these concerns, we can explicitly 

convert types when needed.

Next, we will cover explicit conversion.

Explicit conversion
C++ supports C-style cast explicit conversion, but also functional-style cast and the following 

casting operators:

•	 const_cast

•	 static_cast

•	 dynamic_cast

•	 reinterpret_cast

We will go through casting operators, starting with const_cast.

const_cast
const_cast is used to cast away constness to work with non-const-correct functions. We will go 

through the following example to better understand it:

#include <cstdio>

void print_num(int & num) {

    printf("num is %d\r\n", num);

}

int main() {

    const int num = 42;
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    print_num(const_cast<int&>(num));

    int & num_ref = const_cast<int&>(num);

    num_ref = 16;

    return num;

}

In the above example, we used const_cast in two different scenarios. We first used it to cast away 

constness from const int num to be able to pass it to the print_num function. The print_num 

function has a single parameter – a non-const reference to an int. As we know that this function 

is not trying to modify the object that the reference is bound to, we decided to cast away constness 

so we can pass a reference to a const int to it without the compiler generating an error.

Then, we used const_cast to cast away constness from the num to be able to assign it to non-const 

reference num_ref. If you run this example in Compiler Explorer, you will see the following output:

Program returned: 42

num is 42

The program returned 42, that is, the value of num is 42 even though we tried to set it to 16 through 

num_ref. This is due to the fact that modifying the const variable through a non-const reference 

or a pointer is undefined behavior.

const_cast is used mostly to interface with non-const correct functions. Still, this is dangerous 

and should be avoided as we can’t guarantee that the function we are passing a const-cast-away 

pointer or a reference will not try to modify the object that the pointer is pointing to or the reference 

it is bound to. Next, we will cover static_cast.

static_cast
The most used cast operator in C++ is static_cast, and it is used in the following scenarios:

•	 To upcast and downcast a pointer of base class to derived class and vice versa

•	 To discard a value expression

•	 To convert between types with well-known conversion paths such as int to float, enum to 

an int, int to an enum, and similar
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We will go through several usages of static_cast using the following example:

#include <cstdio>

struct Base {

    void hi() {

        printf("Hi from Base\r\n");

    }

};

struct Derived : public Base {

    void hi() {

        printf("Hi from Derived\r\n");

    }

};

int main() {

    // unsigned to signed int 

    int a = -4; 

    unsigned int b = 3; 

    if(a + static_cast<int>(b) > 0) { 

        printf("%d + %d is greater than 0\r\n", a, b); 

    } 

    else {

        printf("%d + %d is not greater than 0\r\n", a,b); 

    }

    // discard an expression

    int c;

    static_cast<void>(c);

    Derived derived;

    // implicit upcast

    Base * base_ptr = &derived;

    base_ptr->hi();
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    // downcast

    Derived *derived_p = static_cast<Derived*>(base_ptr);

    derived_p->hi();

    return 0;

}

If we run the above example, we will get the following output:

-4 + 3 is not greater than 0

Hi from Base

Hi from Derived

In the above example, we used static_cast to convert an unsigned int to a signed int, which 

helps mitigate the issue of comparing integers with mixed signs introduced by implicit conversion. 

Still, we would need to make sure that the conversion is safe as static_cast doesn’t do any 

runtime checks.

Using static_cast to cast the variable c to void is a technique used to suppress compiler warnings 

about unused variables. It indicates that we are aware of the variable, but we intentionally do 

not use it.

In the other part of the above example, we can see that an address to an object of the Derived class 

can be implicitly converted to a pointer of the Base class. If we call a function hi on the pointer 

of the Base class which is pointing to an object of the Derived class, we will actually make a call 

to a hi function defined in the Base class. Then we used static_cast to downcast Base pointer 

to a Derived pointer.

Down-casting using static_cast can be dangerous as static_cast doesn’t do any runtime 

checks to make sure that the pointer is actually pointing to the converting type. An object of the 

Derived class is also an object of the Base class, but the reverse is not true – Base is not Derived. 

The following example demonstrates why this is dangerous:

#include <cstdio>

struct Base {

    void hi() {

        printf("Hi from Base\r\n");

    }

};
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struct Derived : public Base {

    void hi() {

        printf("Hi from Derived, x = %d\r\n", x);

    }

    int x = 42;

};

int main() {

    Base base;

    Derived *derived_ptr = static_cast<Derived*>(&base);

    derived_ptr->hi();

    return 0;

}

In this code, we are trying to access member x of the Derived class on an object of the base class. 

As we used static_cast, the compiler will not complain and this will result in undefined behavior, 

as the base class doesn’t have member x. One of the possible outputs of this program is shown here:

Hi from Derived, x = 1574921984

To avoid this problem, we can use dynamic_cast, which we will cover next.

dynamic_cast
dynamic_cast performs runtime checks of types and sets the result to nullptr in case the Base 

pointer doesn’t actually point to an object of the Derived class. We will go through an example 

to better understand it:

#include <cstdio>

struct Base {

    virtual void hi() {

        printf("Hi from Base\r\n");

    }

};

struct Derived : public Base {

    void hi() override {

        printf("Hi from Derived\r\n");
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    }

    void derived_only() {

        printf("Derived only method\r\n");

    }

};

void process(Base *base) {

    base->hi();

    if(auto ptr = dynamic_cast<Derived*>(base); ptr ! = nullptr) 

    {

        ptr->derived_only();

    }

}

int main() {

    Base base;

    Derived derived;

    Base * base_ptr = &derived;

    process(&base);

    process(base_ptr);

    return 0;

}

In the above example, we have a function process with a pointer to Base as a parameter. The 

function uses dynamic_cast to downcast the Base pointer to a Derived pointer. In the if statement 

with initializer, we initialize ptr with the result of dynamic_cast<Derived*> on a Base pointer. 

In the condition of the if statement, we check if ptr is different from nullptr, and if it is we can 

safely use it as a pointer to an object of the Derived class. Next, we will cover reinterpret_cast.
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reinterpret_cast
reinterpret_cast is used to convert between types by reinterpreting the underlying bits. It can 

be used in the following situations:

•	 To convert a pointer to an integer large enough to hold all of its values.

•	 To convert a value of an integer to a pointer. A pointer converted to an integer and back 

to its original type is guaranteed to have the original value and can be dereferenced safely.

•	 To convert pointers between different types, such as between T1 and T2. The resulting 

pointer to T2 can be dereferenced safely only if the resulting pointer is char, unsigned 

char, std::byte, or T1.

•	 To convert a function pointer F1 to a pointer to a different function F2. Converting F2 back 

to F1 will result in the pointer to F1.

To better understand reinterpret_cast, we will go through the following example:

#include <cstdio>

#include <cstdint>

int fun() {

    printf("fun\r\n");

    return 42;

}

int main() {

    float f = 3.14f;

    // initialize pointer to an int with float address

    auto a = reinterpret_cast<int*>(&f);

    printf("a = %d\r\n", *a);

    // the above is same as:

    a = static_cast<int*>(static_cast<void*>(&f));

    printf("a = %d\r\n", *a);

    // casting back to float pointer

    auto fptr = reinterpret_cast<float*>(a);

    printf("f = %.2f\r\n", *fptr);
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    // converting a pointer to integer

    auto int_val = reinterpret_cast<std::uintptr_t>(fptr);

    printf("Address of float f is 0x%8X\r\n", int_val);

    auto fun_void_ptr = reinterpret_cast<void(*)()>(fun);

    // undefined behavior

    fun_void_ptr();

    auto fun_int_ptr = reinterpret_cast<int(*)()>(fun);

    // safe call

    printf("fun_int_ptr returns %d\r\n", fun_int_ptr());

    return 0;

}

You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_reinterpret_cast.cpp"

$ cmake --build build --target run_in_renode

Running the example in Renode will provide the following output:

a = 1078523331

a = 1078523331

f = 3.14

Address of float f is 0x20003F18

fun

fun

fun_int_ptr returns 42

The above example demonstrates the usage of reinterpret_cast. We first initialized a pointer 

to an int using the address of a float using reinterpret_cast<int*>(&f). This is equivalent to 

using static_cast as static_cast<int*>(static_cast<void*>(&f)).  We print the value of 

the dereference integer pointer, and it is 1078523331. This is an actual bit pattern contained in 

the float variable f. It is an IEEE-754 floating point representation of 3.14.
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However, dereferencing the integer pointer initialized by an address of a float is not a defined 

behavior according to the C++ standard. This is called type punning – treating an object of one 

type as if it were another type. Using reinterpet_cast for type punning is common, as it proved 

to yield expected results on most platforms despite the undefined behavior. There are alternatives 

that we will discuss after going through this example.

If we cast the pointer to the integer back to a pointer to a float, it is safe to dereference the resulting 

pointer.

Next, we converted the pointer to float to an integer to print the address it contains. We used 

std::uintptr_t, an integer type that is capable of holding a pointer to void. Following this, we 

initialized fun_void_ptr – a pointer to a function that returns void with function fun, which 

returns int. We made a call on the fun_void_ptr pointer, which printed the expected output, but 

it is still undefined. Converting fun_void_ptr to a pointer that matches the signature of function 

fun – fun_int_ptr – will make calling fun through the resulting pointer safe.

Next, we will go through type punning in C++ and the alternatives to using reinterpret_cast 

for this task.

Type punning
Using reinterpret_cast for type punning is a common practice even though it introduces 

undefined behavior. Aliasing rules determine how we can access an object in C++, and to put 

it simply, we can access an object through a pointer and const qualified version of that pointer, 

a struct or union that contains the object, and through a char, unsigned char, and std::byte.

We will go through the following example to better understand type punning in C++:

#include <cstdio>

#include <cstdint>

#include <cstring>

namespace {

struct my_struct {

    int a;

    char c;

};

void print_my_struct (const my_struct & str) {

    printf("a = %d, c = %c\r\n", str.a, str.c);

}
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void process_data(const char * data) {

    const auto *pstr = reinterpret_cast<const my_struct *>(data);

    printf("%s\r\n", __func__);

    print_my_struct(pstr[0]);

    print_my_struct(pstr[1]);

}

void process_data_memcpy(const char * data) {

    my_struct my_structs[2];

    std::memcpy(my_structs, data, sizeof(my_structs));

    printf("%s\r\n", __func__);

    print_my_struct(my_structs[0]);

    print_my_struct(my_structs[1]);

}

};

int main() {

    int i = 42;

    auto * i_ptr = reinterpret_cast<char*>(&i);

    if(i_ptr[0]==42) {

        printf("Little endian!\r\n");

    }

    else {

        printf("Big endian!\r\n");

    }

    my_struct my_structs_arr[] = {{4, 'a'}, {5, 'b'}};

    char arr[128];

    std::memcpy(&arr, my_structs_arr, sizeof(my_structs_arr));

    process_data(arr);

    process_data_memcpy(arr);

    return 0;

}
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You can run the above example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_type_punning.cpp"

$ cmake --build build --target run_in_renode

Running the example in Renode will provide the following output:

Little endian!

process_data

a = 4, c = a

a = 5, c = b

process_data_memcpy

a = 4, c = a

a = 5, c = b

In the example above, we used reinterpret_cast to treat an integer i as an array of chars. By 

checking the value pointed by the first element of the mentioned array, we can determine if we 

are on a big or little-endian system. As per the aliasing rules, this is a valid approach, but treating 

an array of chars as some other type would be undefined behavior. We did that in the function 

void process_data where we reinterpreted an array of chars as an array of my_struct objects. The 

output of the program is as we would expect it, even though we introduced undefined behavior. 

To mitigate this issue, we can use std::memcpy.

Type punning – the correct way
Using std::memcpy is the only (as of C++23) available option for type punning in C++. In the 

above example, we demonstrate this in the process_data_memcpy function. There is usually a 

concern of bytes being copied, using additional memory and runtime overhead, but the fact is 

that the call to memcpy is usually optimized away by a compiler. You can verify this by running 

the above example in Compiler Explorer and by experimenting with different optimization levels.

C++20 introduces std::bit_cast, which can also be used for type punning, as in the following 

example:

#include <cstdio>

#include <bit>

int main() {
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    float f = 3.14f;

    auto a = std::bit_cast<int>(f);

    printf("a = %d\r\n", a);

    return 0;

}

The output of the above program is:

a = 1078523331

The above example and the program output demonstrate the usage of std::bit_cast for type 

punning. The std::bit_cast will return an object. We specify the type that we are converting to 

as the template argument. This will also be the return type of the std::bit_cast. The size of the 

converting type and the type we are converting to must be the same. This means std::bit_cast 

is not an option for interpreting arrays of one type as arrays of another type, and for that we still 

need to use std::memcpy.

Next, we will see how we can use strong types in C++ to increase type safety.

Strong types
When we talk about type-safety, we should also discuss the safety of interfaces that use commonly 

available types such as integers and floats to represent physical units such as time, length, and 

volume. Let us take a look at the following function from a vendor’s SDK:

/**

  * @brief Start the direct connection establishment procedure.

A LE_Create_Connection call will be made to the controller by GAP with the 
initiator filter policy set to "ignore whitelist and

process connectable advertising packets only for the specified

device".

  * @param LE_Scan_Interval This is defined as the time interval from when 
the Controller started its last LE scan until it begins the subsequent LE 
scan.

Time = N * 0.625 msec.

  * Values:

  - 0x0004 (2.500 ms)  ... 0x4000 (10240.000 ms)
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  * @param LE_Scan_Window Amount of time for the duration of the LE scan. 
LE_Scan_Window

shall be less than or equal to LE_Scan_Interval.

Time = N * 0.625 msec.

  * Values:

  - 0x0004 (2.500 ms)  ... 0x4000 (10240.000 ms)

  * @param Peer_Address_Type The address type of the peer device.

  * Values:

  - 0x00: Public Device Address

  - 0x01: Random Device Address

  * @param Peer_Address Public Device Address or Random Device Address of 
the device

to be connected.

    * @param Conn_Interval_Min Minimum value for the connection event 
interval. This shall be less than or equal to Conn_Interval_Max.

Time = N * 1.25 msec.

  * Values:

  - 0x0006 (7.50 ms)  ... 0x0C80 (4000.00 ms)

  * @param Conn_Interval_Max Maximum value for the connection event 
interval. This shall be

greater than or equal to Conn_Interval_Min.

Time = N * 1.25 msec.

  * Values:

  - 0x0006 (7.50 ms)  ... 0x0C80 (4000.00 ms)

  * @param Conn_Latency Slave latency for the connection in number of 
connection events.

  * Values:

  - 0x0000 ... 0x01F3

  * @param Supervision_Timeout Supervision timeout for the LE Link.

It shall be a multiple of 10 ms and larger than (1 + connSlaveLatency) * 
connInterval * 2.

Time = N * 10 msec.

  * Values:

  - 0x000A (100 ms)  ... 0x0C80 (32000 ms)

  * @param Minimum_CE_Length Information parameter about the minimum 
length of connection needed for this LE connection.

Time = N * 0.625 msec.

  * Values:
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  - 0x0000 (0.000 ms)  ... 0xFFFF (40959.375 ms)

  * @param Maximum_CE_Length Information parameter about the maximum 
length of connection needed

for this LE connection.

Time = N * 0.625 msec.

  * Values:

  - 0x0000 (0.000 ms)  ... 0xFFFF (40959.375 ms)

  * @retval Value indicating success or error code.

*/

tBleStatus aci_gap_create_connection(

                              uint16_t LE_Scan_Interval,

                              uint16_t LE_Scan_Window,

                              uint8_t Peer_Address_Type,

                              uint8_t Peer_Address[6],

                              uint16_t Conn_Interval_Min,

                              uint16_t Conn_Interval_Max,

                              uint16_t Conn_Latency,

                              uint16_t Supervision_Timeout,

                              uint16_t Minimum_CE_Length,

                              uint16_t Maximum_CE_Length);

This is a well-documented function. Still, it takes a lot of effort to understand all the parameters 

that it accepts and the exact units of each. Most of the parameters represent time but in a different 

way.

LE_Scan_Interval, LE_Scan_Window, Conn_Interval_Min, Conn_Interval_Max, Supervision_

Timeout, Minimum_CE_Length, and Maximum_CE_Length are all time-related parameters, but they 

represent different units. They are either multiples of 0.625, 1.25, or 10 ms. The vendor of the above 

function also provided the following macros:

#define CONN_L(x) ((int)((x) / 0.625f))

#define CONN_P(x) ((int)((x) / 1.25f))

Here is an example of a call to the above function using the provided macros:

tBleStatus status = aci_gap_create_connection(CONN_L(80), CONN_L(120), 
PUBLIC_ADDR, mac_addr, CONN_P(50), CONN_P(60), 0, SUPERV_TIMEOUT, 
CONN_L(10), CONN_L(15));
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The macros help a bit with readability, but the problem of passing bad values to this function still 

remains. It is fairly easy to make a mistake, swap the CONN_L and CONN_P macros, and introduce 

a hard-to-find bug to the program. Instead of uint16_t, we could define and use types conn_l 

and conn_p. If we wrap the function with these amendments, we will have the following wrapper 

function:

tBleStatus aci_gap_create_connection_wrapper(

                            conn_l LE_Scan_Interval,

                            conn_l LE_Scan_Window,

                            uint8_t Peer_Address_Type,

                            uint8_t Peer_Address[6],

                            conn_p Conn_Interval_Min,

                            conn_p Conn_Interval_Max,

                            uint16_t Conn_Latency,

                            uint16_t Supervision_Timeout,

                            conn_l Minimum_CE_Length,

                            conn_l Maximum_CE_Length);

In the above example, we are using conn_l and conn_p types instead of uint16_t, and we will 

define these types as follows:

class conn_l {

private:

    uint16_t time_;

public:

    explicit conn_l(float time_ms) : time_(time_ms/0.625f){}

    uint16_t & get() {return time_;}

};

class conn_p {

private:

    uint16_t time_;

public:

    explicit conn_p(float time_ms) : time_(time_ms/1.25f){}

    uint16_t & get() {return time_;}

};
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Using the above strong types conn_l and conn_p, we can call the wrapper function as shown below:

    tBleStatus stat = aci_gap_create_connection_wrapper(

            conn_l(80),

            conn_l(120),

            PUBLIC_ADDR,

            nullptr,

            conn_p(50),

            conn_p(60),

            0,

            SUPERV_TIMEOUT,

            conn_l(10),

            conn_l(15)

    );

By using the keyword explicit in front of constructors of types conn_l and conn_p, we make 

sure that the compiler doesn’t perform implicit conversion from integer types. This makes it 

impossible to pass an integer or a float that can be used to construct conn_l and conn_p to the 

aci_gap_create_connection_wrapper.

You can run the entire example from the book’s GitHub repo. It is placed under Chapter09/type_

safety and you can build and run it using the following commands:

$ cmake -B build -DMAIN_CPP_FILE_NAME="main_strong_types.cpp"

$ cmake --build build --target run_in_renode

Compiling the example successfully means that we passed all the correct arguments to aci_gap_

create_connection_wrapper. As an exercise, try passing integer values instead of conn_l and 

conn_p arguments to see how they prevent the compiler from doing implicit conversions. After 

that, try removing the explicit keyword from the conn_l and conn_p constructors to see what 

will happen.

We can further improve the example by introducing a strong-type time that will represent the 

time duration, and make it a private member of types conn_l and conn_p. The code would look 

as follows:

class time {

private:

    uint16_t time_in_ms_;

public:

    explicit time(uint16_t time_in_ms) : time_in_ms_(time_in_ms){}
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    uint16_t & get_ms() {return time_in_ms_;}

};

time operator""_ms(unsigned long long t) {

    return time(t);

}

class conn_l {

private:

    uint16_t val_;

public:

    explicit conn_l(time t) : val_(t.get_ms()/0.625f){}

    uint16_t & get() {return val_;}

};

class conn_p {

private:

    uint16_t val_;

public:

    explicit conn_p(time t) : val_(t.get_ms()/1.25f){}

    uint16_t & get() {return val_;}

};

In the above example, we created a strong-type time and used it as a private member in types 

conn_l and conn_p. We also created a user-defined literal with operator""_ms to make the 

following function call possible:

    tBleStatus stat = aci_gap_create_connection_wrapper(

            conn_l(80_ms),

            conn_l(120_ms),

            PUBLIC_ADDR,

            nullptr,

            conn_p(50_ms),

            conn_p(60_ms),

            0_ms,

            4000_ms,

            conn_l(10_ms),

            conn_l(15_ms)

    );
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In the above example, we are using the user-defined literal operator""_ms to create objects of 

strong-type time that are used to instantiate conn_l and conn_p objects.

The above changes to the original interface improve code readability and compile-time error 

detection. Using strong types, we make it a lot harder to pass wrong values to the function, 

increasing the type-safety of our codebase.

Summary
Type safety is an important aspect of any programming language used in critical applications. 

Understanding potential issues of implicit conversion is important to mitigate type-safety 

concerns. Type punning is another area that deserves special attention in C++, and we learned 

how to address it properly. We also learned how to use strong types to mitigate issues of passing 

wrong values to parameters with the same types.

Next, we will cover lambdas in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems


10
Writing Expressive Code with 
Lambdas

Lambda expressions in C++ allow us to write short blocks of code that encapsulate functionality 

and capture the surrounding state into a callable object. We can use operator() on a callable 

object to execute the functionality implemented in it.

Common uses of lambdas include passing a function object (also called a functor – an object of a 

class that overrides operator()) to standard library algorithms, or any code expecting a function 

object, encapsulating small blocks of code that are often used only in a single function, and variable 

initialization. Their ability to localize functionality without separate functions or class methods 

modernized C++, making it possible to write cleaner, more expressive code.

In embedded development, lambdas are especially useful for defining actions in response to timer 

or external interrupts, scheduling tasks, and similar event-driven mechanisms. The goal of this 

chapter is to learn how to use lambda expressions to write expressive C++ code. In this chapter, 

we’re going to cover the following main topics:

•	 Lambda expression basics

•	 Store lambdas using std::function

•	 std::function and dynamic memory allocation
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Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using a lot of modern C++ features, make sure to select the C++23 

standard by adding -std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects the 

output and generated assembly. Most of the examples can also be run in the Renode simulator on 

the ARM Cortex-M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter10).

Lambda expression basics
Lambda expressions, or lambdas, were introduced in C++11. They are used to create an instance 

of an unnamed closure type in C++. A closure stores an unnamed function and can capture 

variables from its scope by value or reference. We can call operator () on a lambda instance, 

with arguments specified in the lambda definition, effectively calling the underlying unnamed 

function. To draw a parallel with C, lambdas are callable in the same way as function pointers.

We will now dive into an example to demonstrate how we can use lambdas in C++ and explain 

details regarding lambda capturing. Let us process the example below:

#include <cstdio>

#include <array>

#include <algorithm>

int main() {

    std::array<int, 4> arr{5, 3, 4, 1};

    const auto print_arr = [&arr](const char* message) {

        printf("%s\r\n", message);

        for(auto elem : arr) {

            printf("%d, ", elem);

        }

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter10
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter10
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        printf("\r\n");

    };

    print_arr("Unsorted array:");

    std::sort(arr.begin(), arr.end(), [](int a, int b) {

       return a < b;});

    print_arr("Sorted in ascending order:");

    std::sort(arr.begin(), arr.end(), [](int a, int b) {

       return a > b;});

    print_arr("Sorted in descending order:");

    return 0;

}

Running the above example, we will get the following output:

Unsorted array:

5, 3, 4, 1,

Sorted in ascending order:

1, 3, 4, 5,

Sorted in descending order:

5, 4, 3, 1,

What we see are outputs of the lambda print_arr used to print an array arr defined in the main 

function. Let’s go through the print_arr lambda in detail:

•	 The [&arr] syntax captures the variable arr by reference from the surrounding scope. This 

means the lambda can access and use arr directly within its body.

•	 We can capture variables by value, or by reference if we prefix the name of a variable with 

& as we did for the print_arr lambda.

•	 Capturing by reference [&arr] allows the lambda to see any changes made to arr outside 

the lambda after its definition. If we captured by value, the lambda would have its own 

copy of arr.

•	 By defining print_arr as a lambda within main, we encapsulate the functionality of 

printing the array without needing to create a separate function. This keeps related code 

together and enhances readability.
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In the same example, we used lambdas as predicate functions to the std::sort algorithm, to 

sort array arr first in ascending, then in descending order. We will go through this use case of 

lambdas in more detail:

•	 The std::sort algorithm rearranges the elements of arr based on the comparator provided.

•	 The lambda [](int a, int b) { return a < b; } acts as a comparator function for 

std::sort. It takes two integers and returns true if the first is less than the second, which 

results in an ascending sort.

•	 The lambda [](int a, int b) { return a > b; } returns true if the first integer is 

greater than the second, resulting in a descending sort.

Defining the comparator directly at the call site of std::sort makes the code more concise. It 

becomes immediately clear how the array is being sorted without needing to look elsewhere in 

the code.

In the cases of using lambdas with the std::sort algorithm, both lambdas are small and simple, 

making it easy to deduce what they return. Keeping lambdas short and straightforward is 

considered a good practice as it improves readability and makes the intent of the code immediately 

clear to others. We can also specify the lambda return type explicitly as in the following example:

    auto greater_than = [](int a, int b) -> bool {

        return a > b;

    };

Here, we explicitly defined the return type. This is optional and can be used when we want to be 

explicit about the type that a lambda returns. Also, note that the capture clause of this lambda 

is empty square brackets []. This indicates that the lambda is not capturing any variables from 

the surrounding scope.

When the lambda is capturing a variable by reference, it is important to note that this introduces 

lifetime dependency – meaning that the object that reference is bound to must exist when we 

call the lambda – else, we will use a so-called dangling reference, which is undefined behavior. 

This is especially a concern with asynchronous operations – that is, when a lambda is passed to 

a function and called later. Next, we will learn how to store lambdas using std::function to use 

them asynchronously.
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Storing lambdas using std::function
std::function is a class template that allows us to store, copy, and invoke callable objects such 

as function pointers and lambdas. We will go through a simple code example to demonstrate this:

#include <cstdio>

#include <cstdint>

#include <functional>

int main() {

    std::function<void()> fun;

    fun = []() {

        printf("This is a lambda!\r\n");

    }; 

    fun();

    std::uint32_t reg = 0x12345678;

    fun = [reg]() {

        printf("Reg content 0x%8X\r\n", reg);

    };

    reg = 0;

    fun();

    return 0;

}

Let us go through the example:

•	 In the main function, we first create an object fun of type std::function<void()>. This 

specifies that fun can store any callable object that returns void and takes no arguments. 

This includes function pointers, lambdas, or any object with an operator() that matches 

the signature.

•	  We then assign a lambda to fun and invoke it, which prints the message “This is a lambda!” 

to the console.
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•	 Next, we assigned another lambda to the fun object. This time the lambda captures the 

uint32_t reg by value from the surrounding scope and prints it. Capturing by value 

means the lambda makes its own copy of reg at the moment the lambda is defined.

•	 We change the value of reg to 0 before invoking the callable object stored in fun to show 

it is being captured by value. Calling fun prints Reg content 0x12345678.

Let’s use std::function in a more interesting example, where we will use it to store a callback 

to a GPIO interrupt. The code is below:

#include <cstdio>

#include <cstdint>

#include <functional>

namespace hal

{

class gpio

{

public:

    gpio(const std::function<void()> & on_press) {

        if(on_press) {

            on_press_ = on_press;

        }

    }

    void execute_interrupt_handler () const {

        if(on_press_) {

            on_press_();

        }

    }

private:

    std::function<void()> on_press_ = nullptr;

};



Chapter 10 205

}; // namespace hal

int main () {

    hal::gpio button1([]() {

        printf("Button1 pressed!\r\n");

    });

    // invoke stored lambda

    button1.execute_interrupt_handler();

    return 0;

}

In the code above, we created a hal::gpio class that represents a GPIO:

The class stores std::function<void()> on_press_, which can hold any callable object like a 

lambda function. It is initialized to nullptr to indicate it holds no callable object.

•	 It provides the method execute_interrupt_handler, which checks if on_press_ evaluates 

to true, that is, if it stores a callable object, and executes it if it does.

In the main function, we create button1, an object of class hal::button:

•	 We provide the constructor with a simple lambda that prints Button1 pressed!.

•	 Next, we call the method execute_interrupt_handler, which invokes the stored lambda 

and the program prints Button1 pressed!.

In a real firmware, we would call the method execute_interrupt_handler from an interrupt 

service.

The above code is an example of the application of the command pattern, which is implemented 

in a simple and expressive way in C++ thanks to std::function and lambda expressions.
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The command pattern
The command pattern is a behavioral design pattern used to capture a function call together 

with required arguments – allowing us to execute those functions with a delay.

We will go through a canonical definition of the command pattern. Let us start with a UML 

diagram of the pattern and explain it afterward:

Figure 10.1 – Command pattern – UML diagram

Figure 10.1 depicts a UML diagram of the command pattern. We notice the following entities in 

the above diagram.
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The command interface with a virtual execute method, and a concrete_command implementation 

of the interface.

•	 receiver, stored by a reference in the concrete_command implementation. It performs 

an action that takes params as arguments.

•	 invoker, which stores a reference to the command interface and executes a command.

•	 client, which creates a receiver and passes it to the constructor of concrete_command. 

It passes a reference of a created concrete_command to an invoker.

By using the command interface, we are able to make different concrete commands and provide 

them to invokers. Instead of the command interface and concrete commands, we can use class 

template std::function and lambda expressions for the same purpose.

In our previous example, we created the hal::gpio class as an invoker from the command pattern. 

It has a std::function<void()> as a member – an equivalent to a command interface. A concrete 

command is a lambda expression that we stored in std::function<void()>.

receiver is the lambda body – the printf function in our example – and client is the main 

function. The client creates a receiver (hal::gpio button1) and provides it with a concrete 

command (lambda expression). We call execute_interrupt_handler on the invoker directly 

from the main function.

Next, we will expand this example to call execute_interrupt_handler from the interrupt handler 

on the STM32 platform. The design will support interrupts from multiple pins. We will introduce 

the gpio_interrupt_manager entity, which will be responsible for registering invokers and calling 

the execute_interrupt_handler method on them.

GPIO interrupt manager
We want to utilize the std::function class template and lambda expressions to enable an 

expressive way of creating GPIO interrupt handlers in firmware as in the following code:

const hal::gpio_stm32<hal::port_a> button1(hal::pin::p4, [](){

    printf("Button1 pressed!\r\n");

});
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In the code above, we are creating an object button1 from the class template hal::gpio_stm32 

parametrized with hal::port_a. We are providing a constructor with hal::pin::p4 and a lambda 

expression that will be executed on interrupt. This is a goal, an expressive interface for writing 

interrupt handlers that also allows us to capture surrounding variables if needed, thanks to 

lambda expressions.

From the code above, we can see both the pin and the port we are configuring and the callback 

that will be executed on the interrupt. The mechanism that we will create will handle interrupt 

handler registration to a central entity we will name gpio_interrupt_manager. Before we proceed 

with the design, please run the full example in Renode using the instructions below.

1.	 Start Visual Studio Code, attach it to the running container, open the Chapter10/lambdas 

project as described in Chapter 4, and run the following commands in the Visual Studio 

Code terminal, or run them directly in the container terminal:

$ cd Chapter10/lambdas

$ cmake -B build -DCMAKE_BUILD_TYPE=Debug -DMAIN_CPP_FILE_NAME=main_
std_function_command_pattern.cpp

$ cmake --build build --target run_in_renode

2.	 In Renode, we can simulate button press and release using the following command for 

button1 and button2:

gpioPortA.button1 PressAndRelease

gpioPortA.button2 PressAndRelease

3.	 Entering the above command should result in the following output in the Renode console:

Button1 pressed!

Button2 pressed!
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As you can see, actions provided in lambdas are invoked by interrupts generated by buttons. Let 

us go through the UML diagram of this example to understand how it works:

Figure 10.2 – GPIO Interrupt manager UML diagram

In Figure 10.2, we see the UML diagram of the GPIO interrupt manager. It is based on the command 

pattern. We are using std::function<void()> in place of the command interface and lambda 

expression for concrete commands. The invoker is the hal::gpio abstract class, which stores 

the lambda in the member on_press. It registers itself with gpio_interrupt_manager in the 

constructor as we can see from the following code:

gpio::gpio(const std::function<void()> & on_press) {

   on_press_ = on_press;

   gpio_interrupt_manager::register_interrupt_handler(this)

}
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gpio_interrupt_manager is a simple struct. It serves as a central entity for the interrupt handling 

mechanism with the following features:

•	 It contains an array of hal::gpio pointers – std::array<gpio*, c_gpio_handlers_num> 

gpio_handlers.

•	 It provides a static method to register a hal::gpio pointer – void register_interrupt_

handler(gpio * pin).

•	 It provides a static method that executes interrupt handlers stored in the array – void 

execute_interrupt_handlers().

The method execute_interrupt_handlers is called from the interrupt service routine as shown 

below:

extern "C" void EXTI4_15_IRQHandler(void) {

    gpio_interrupt_manager::execute_interrupt_handlers();

}

EXTI4_15_IRQHandler is an interrupt service routine defined in the vector table (defined in 

platform/startup_stm32f072xb.s). That’s why we used "C" language linkage and implemented 

it as a global function. The execute_interrupt_handlers method loops through the array of 

hal::gpio pointers and calls the execute_interrupt_handler method on them as shown below:

void gpio_interrupt_manager::execute_interrupt_handlers() {

    for(std::size_t i = 0; i < w_idx; i++) {

        gpio_handlers[i]->execute_interrupt_handler();

    }

}

hal::gpio is an abstract class with the following features:

•	 It implements the execute_interrupt_handler method used by gpio_interrupt_

manager as we saw earlier.

•	 It defines the pure virtual method [[nodiscard]] virtual bool is_interrupt_

generated() const = 0. This method needs to be overridden by the derived class that 

implements platform-specific functionality.

•	 It defines the virtual method virtual void clear_interrupt_flag() const = 0. This 

method needs to be overridden by the derived class that implements platform-specific 

functionality.
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The code for execute_interrupt_handler is shown below:

void gpio::execute_interrupt_handler () const {

    if(is_interrupt_generated()){

        clear_interrupt_flag();

        if(on_press_) {

            on_press_();

        }

    }

}

The execute_interrupt_handler method implements the following functionality:

•	 It checks if the interrupt should be handled by the current object using the virtual method 

is_interrupt_generated. This method must be overridden by a derived class. The derived 

class has the data needed to determine if the generated interrupt needs to be addressed 

by the current object.

•	 If the interrupt should be addressed by the current object, the interrupt flag is cleared 

using the virtual method clear_interrupt_flag and on_press_ is called if it stores a 

callable object.

hal::gpio_stm32 is a class template derived from hal::gpio. We instantiate it with port as a 

parameter, and it implements platform-specific operations such as GPIO initialization using the 

vendor-provided C HAL library.

In the example, we instantiated hal::gpio_stm32 with struct port_a, which contains the void 

init_clock() static function. This allows us to call a static method on the template parameter, 

instead of defining port as an enum, checking it in runtime, and calling a port-specific function 

for clock initialization.

The hal::gpio_stm32 class template uses hal::gpio as a base class:

•	 The constructor takes an enum pin and const reference to a std::function<void()> 

object that we use to initialize the base class in the initialization list.

•	 [[nodiscard]] bool is_interrupt_generated() const – the overridden method uses 

vendor-provided C HAL to determine if the interrupt was generated by the pin provided 

to the object through the constructor.

•	 void clear_interrupt_flag() const – the overridden method implements platform-

specific code used to clear the interrupt flag.
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This sums up the implementation of the GPIO interrupt manager and explains the design. You 

can refer to other details of the implementation in the source code provided in the Chapter10/

lambdas folder of the book’s GitHub repo.

Next, we will discuss the implications of using std::function on dynamic memory allocation.

std::function and dynamic memory allocation
std::function needs to store all variables and references that a lambda captures. This behavior 

is implementation-defined, and implementations usually use heap, which is dynamic memory 

allocation to store large amounts of variables. If the captured data is small (on some platforms, 

16 bytes), it will be stored on the stack. This is called small object optimization. To demonstrate 

the behavior of the std::function class template when capturing data, we will go through the 

following example:

#include <cstdio>

#include <cstdint>

#include <cstdlib>

#include <functional>

void *operator new(std::size_t count) {

  printf("%s, size = %ld\r\n", __PRETTY_FUNCTION__, count);

  return std::malloc(count);

}

void operator delete(void *ptr) noexcept {

  printf("%s\r\n", __PRETTY_FUNCTION__);

  std::free(ptr);

}

int main () {

    std::function<void()> func;

    auto arr = []() {

        constexpr std::size_t c_array_size = 6;

        std::array<int, c_array_size> ar{};

        for(int i = 0; i < ar.size(); i++) {

            ar[i] = i;

        }
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        return ar;

    }();

    auto array_printer = [arr]() {

        for(int elem: arr) {

            printf("%d, ", elem);

        }

        printf("\r\n");

    };

    func = array_printer;

    // invoke stored lambda

    func();

    return 0;

}

In the above example, we have overridden the operators new and delete to show that storing a 

lambda that captures an array of 6 integers will invoke dynamic memory allocation. If you run the 

above example in Compiler Explorer using x86-64 GCC 14.2, you will see the following output:

void* operator new(std::size_t), size = 24

0, 1, 2, 3, 4,

void operator delete(void*)

This example also demonstrates the initialization of variable arr by using a lambda to generate 

members of the array. If you change constexpr std::size_t c_array_size to 4, you will notice 

that the operators new and delete are no longer invoked, meaning that, in this case, the captured 

data is stored on the stack.

To get around this problem, we can assign std::reference_wrapper of a lambda object to 

std::function<void()> fun instead of the object itself as in the following line of code:

    func = std::ref(array_printer);

This will make the std::function object use a reference wrapper to the lambda object, instead 

of copying it and storing all the variables that lambda is capturing. Using this approach, we must 

take care of the lambda object lifetime, meaning that if it goes out of scope and we try to invoke 

it through the std::function object, we will end up with undefined behavior of the program.
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We can also use plain function pointers to store lambdas, but only if they don’t capture anything 

from the surrounding scope, as in the following example:

#include <cstdio>

#include <functional>

int main () {

    void(*fun)(void);

    fun = []() {

        printf("Lambda!\r\n");

    };

    fun();

    return 0;

}

In the above example, we assign the lambda to a function pointer, making it a possible alternative 

to storing lambdas to the std::function class template in certain applications. This also makes 

it possible to pass non-capturing lambdas to C functions that expect function pointers.

Summary
Lambda expressions and std::function are powerful modern C++ tools that allow us to write 

expressive code and implement design patterns such as command patterns in an elegant way. 

We learned about different ways to capture data from the surrounding scope – by value or a 

reference. We also went through the command pattern design pattern and learned how to apply 

it to a GPIO interrupt manager.

In the next chapter, we will go through compile-time computation in C++.
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Compile-Time Computation

Compile-time computation refers to the ability of a compiler to execute functions at compile time, 

instead of converting them to machine code. This means that the results of complex operations 

can be calculated by the compiler and stored in variables that are used at runtime. A compiler can 

execute a function at compile time only if all arguments of the function are known at compile time.

We can use compile-time computation in C++ firmware to calculate complex math operations, 

generate lookup tables and arrays in general, and use the generated values at runtime. Perform-

ing these operations at compile time will save valuable memory and processor (space and time) 

resources and make them available for other, more important operations.

The goal of this chapter is to learn how to use compile-time computation in C++ to shift complex 

operations at compile time and save valuable resources. In this chapter, we’re going to cover the 

following main topics: 

•	 Templates

•	 The constexpr specifier

•	 The consteval specifier

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler for x86 architecture. 

This will allow you to see standard output (stdio) results and better observe the code’s behavior. 

As we are using a lot of modern C++ features, make sure to select the C++23 standard by adding 

-std=c++23 to the compiler options box.

https://godbolt.org/
https://godbolt.org/
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Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects 

the output and generated assembly code. Most of the examples can also be run in the Renode 

simulator on an ARM Cortex-M0 target and are available on GitHub (https://github.com/

PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11).

Templates
The first available mechanism for compile-time computation in C++ was Template Meta-Pro-

gramming (TMP). Using TMP, we can store the results of operations in types, as shown in the 

following example of computing the factorial:

template <unsigned int N>

struct factorial {

    static const unsigned int value = N * factorial<N-1>::value;

};

template <>

struct factorial<0> {

    static const unsigned int value = 1;

};

int main () {

    const int fact = factorial<5>::value;

    return fact;

}

If you run this example in Compiler Explorer (even without optimizations), you will see that it 

returns 120. The generated assembly code is short and does not contain any function calls. It simply 

places the value 120 in the return register in the main function, meaning the factorial computation 

was done at compile time. You can see the generated assembly code here:

main:

        push    rbp

        mov     rbp, rsp

        mov     DWORD PTR [rbp-4], 120

        mov     eax, 120

        pop     rbp

        ret

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter11
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We performed the following steps in the preceding example:

•	 We defined a class template factorial. It has an unsigned int, N, as the parameter and 

only one member: static const unsigned int value = N * factorial<N-1>::value.

•	 In the assignment expression of the member value, we use recursion at the template level 

as we calculate it by multiplying N by the value from the factorial instantiated with N – 1.

•	 We define factorial template specialization for 0, making it a base type that will stop 

recursion, meaning that factorial<0>::value will contain 1.

To better understand the recursion at the template level, we will write down the entire recursion 

chain for the preceding example:

•	 factorial<5>::value = 5 * factorial<4>::value;

•	 factorial<4>::value = 4 * factorial<3>::value;

•	 factorial<3>::value = 3 * factorial<2>::value;

•	 factorial<2>::value = 2 * factorial<1>::value;

•	 factorial<1>::value = 1 * factorial<0>::value;

•	 factorial<0>::value = 1;

If we substitute the base value of factorial<0> with 1, back up the chain, we have the following:

•	 factorial<1>::value = 1 * 1 = 1

•	 factorial<2>::value = 2 * 1 = 2

•	 factorial<3>::value = 3 * 2 = 6

•	 factorial<4>::value = 4 * 6 = 24

•	 factorial<5>::value = 5 * 24 = 120

The main function computes the factorial of 5 by accessing factorial<5>::value and returns it. 

The recursion is terminated by the specialized template for factorial<0>, which provides the 

base case. The final result is that the program returns 120, the factorial of 5.

While TMP allows for compile-time computations, it often involves complex recursive patterns 

that can be difficult to read and maintain. To address these challenges, C++11 introduced the 

constexpr specifier, which has become the preferred mechanism for compile-time computations.
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constexpr specifier
Using the constexpr specifier, we declare that it is possible to evaluate variables and functions 

at compile time. There are limitations to what can be evaluated at compile time. A constexpr 

variable must meet the following requirements:

•	 It needs to be of a literal type, any of the following:

•	 Scalar types such as arithmetic types, enumerations, and pointers

•	 Reference types

•	 An array of literal types

•	 Classes that meet specific requirements (such as a trivial constexpr destructor, all of 

its non-static data members are literal types, or at least one constexpr constructor).

•	 It must be immediately initialized.

•	 The entire expression of its initialization needs to be a constant expression.

Let’s go through the following example to better understand the requirements for constexpr 

variables:

#include <cmath>

int main () {

    constexpr int ret = round(sin(3.14));

    return ret;

}

If you run this example in Compiler Explorer using x86-64 GCC 14.2 compiler, without optimi-

zation enabled, we can observe the following:

•	 The program returns 0.

•	 The resulting assembly is small, and it just moves 0 to return the register.

•	 If you change the initialization of the ret variable so that the sine function takes 3.14/2 

as the argument, the program will return 1.

Now, if we try to change the compiler in Compiler Explorer to x86-64 clang 18.1.0, we will get 

the following compiler error:

<source>:4:19: error: constexpr variable 'ret' must be initialized by a 
constant expression

    4 |     constexpr int ret = round(sin(3.14));

      |                   ^     ~~~~~~~~~~~~~~~~
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<source>:4:31: note: non-constexpr function 'sin' cannot be used in a 
constant expression

    4 |     constexpr int ret = round(sin(3.14));

The compiler reports that we are violating the rule that says that the entire expression of its initial-

ization needs to be a constant expression, as the function sin, in the expression round(sin(3.14)), 

is non-constexpr. This is because Clang’s implementation of math functions is non-constexpr, 

while GCC implements them as constexpr functions. Many math functions will be constexpr 

functions in the new C++26 standard.

Although the upcoming C++26 standard mandates that math functions should be constexpr, 

we will utilize the current GCC implementation because it is the compiler we are using for our 

STM32 target in the examples throughout this book. All constexpr functions must meet the 

following requirements:

•	 Its return type must be of the literal type.

•	 Each of its parameters must be of the literal type.

•	 If a function is not a constructor, it must have only one return statement.

To better understand constexpr functions, let us implement the factorial algorithm as a constexpr 

function in the following example:

constexpr unsigned int factorial(unsigned int n) {

    unsigned int prod = 1;

    while(n > 0) {

        prod *= n;

        n--;

    }

    return prod;

}

int main () {

    constexpr int calc_val = 5;

    constexpr unsigned int ret = factorial(calc_val);

    return ret;

}
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In this example, we implemented the factorial algorithm as a simple constexpr function. Com-

paring it to a TMP-based solution, this code looks familiar to many developers with a C background. 

There is no recursion at the template level and strange syntax. C++11 constexpr functions still 

relied on recursion, but C++14 relaxed constraints on constexpr functions and allowed using 

local variables and loops.

If we run the preceding example in Compiler Explorer using the x86-64 GCC 14.2 compiler, 

without optimization enabled, we can observe the following:

•	 The program returns 120.

•	 The resulting assembly is small, and it just moves 120 to the return register.

•	 There is no factorial function in the resulting assembly code, meaning that the compiler 

executed this function at compile time. We supplied a factorial function with a constant 

expression argument and the compiler evaluated the function at compile time.

•	 If we remove the constexpr specifier from the calc_val and ret variables declarations, 

we will see the factorial function in the resulting assembly call, and in main, we will see 

a call to this function, meaning that in this case, the factorial function is being executed 

at runtime, and in the case of firmware, it will be part of the binary.

As we can see from this example, the constexpr function can be executed at both compile time 

and runtime, depending on the arguments we supply it with. Next, we will go over practical ex-

amples to see how we can apply the constexpr specifier in firmware development.

Example 1 – MAC address parser
The Medium Access Control (MAC) address is used in the MAC layer of different communica-

tion stacks, including Ethernet, Wi-Fi, and Bluetooth. Here, we will create a 48-bit MAC address 

compile-time parser that will help us convert a common format of a MAC address written as hex 

numbers separated by a colon into an array of uint8_t, which is usually used in software stacks. 

The code is shown here:

#include <array>

#include <cstdint>

#include <string_view>

#include <charconv>

struct mac_address {

    static constexpr std::size_t c_bytes_num = 6;
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    static constexpr std::size_t c_mac_addr_str_size = 17;

   

    std::array<uint8_t, c_bytes_num> bytes{};

    bool is_valid = false;

    constexpr mac_address(std::string_view str) {

        if (str.size() != c_mac_addr_str_size) {

            return;

        }

        for (size_t i = 0; i < c_bytes_num; ++i) {

            const std::string_view byte_str = str.substr(i * 3, 2);

            uint8_t value = 0;

            auto result = std::from_chars(byte_str.data(), byte_str.data() 

                                            + byte_str.size(), value, 16);

            if (result.ec != std::errc()) {

                return;

            }

            bytes[i] = value;

        }

        is_valid = true;

    }

};

int main () {

    constexpr mac_address addr("00:11:22:33:44:55");

    static_assert(addr.is_valid);

    return addr.bytes.at(5);

}

In the main function, we create an instance of the struct mac_address, by providing a construc-

tor with "00:11:22:33:44:55". If we run the preceding example in Compiler Explorer using the 

x86-64 GCC 14.2 compiler, without optimization enabled, we can observe the following:

•	 The program returns 85 as a decimal number. Converting it to hex format, we will get 0x55, 

which corresponds to the last byte from the MAC address 00:11:22:33:44:55.
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•	 The resulting assembly is small. It populates the stack with bytes from the MAC address 

we used in the constructor. There are no calls to the constructor, meaning it is executed 

at compile time.

•	 If we change the MAC address provided in the constructor to "000:11:22:33:44:55" 

or "G0:11:22:33:44:55", the compiler will generate an error due to failed static_

assert(addr.is_valid).

Let us now explain the struct mac_address in more detail:

•	 The struct contains the members std::array<uint8_t, c_bytes_num> bytes and bool 

is_valid. It doesn’t contain any methods except the constructor.

•	 The constructor accepts the std::string_view class template, which encapsulates a 

pointer to the first element of the provided string literal, and its size.

•	 The constructor creates substring views using the susbstr method on the string_view 

object and it uses std::from_char to convert them to uint8_t values, which are stored 

in the bytes array.

•	 The constructor sets the bool is_valid to true if there are no errors. Using static_assert, 

we can validate at compile time that the provided MAC address string literal was con-

verted successfully. We cannot use asserts in constexpr functions. The alternative is to 

throw an exception, which would result in a compile-time error, but we decided not to 

use exceptions for our embedded target.

You can also run the preceding example in the Renode simulator on the STM32 target. Start Visual 

Studio Code, attach it to the running container, and open the Chapter11/compile_time project, 

as described in Chapter 4, and run the following commands in the Visual Studio Code terminal, 

or run them directly in the container terminal:

$ cd Chapter11/compile_time

$ cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel -DMAIN_CPP_FILE_NAME=main_
constexpr_mac_address.cpp

$ cmake --build build --target run_in_renode

Here is part of the main function from the main_constexpr_mac_address.cpp file:

constexpr mac_address addr("00:11:22:33:44:55");

static_assert(addr.is_valid);

const std::array<uint8_t, 6> addr_arr{0x00, 0x11, 0x22, 0x33, 0x44, 0x55};

const auto & mac_ref = addr.bytes;



Chapter 11 223

//const auto & mac_ref = addr_arr;

printf("%02X:%02X:%02X:%02X:%02X:%02X\r\n", mac_ref[0], mac_ref[1], mac_
ref[2], mac_ref[3], mac_ref[4], mac_ref[5]);

To confirm that all the work of converting a string literal to an array is performed at compile time, 

you can bind the reference mac_ref to addr_arr and compare binary sizes in both cases. They are 

both 6,564 bytes, meaning that the constexpr constructor is not included in the binary as it is 

actually executed at compile time by the compiler.

Next, we will go through an example of creating a lookup table for a temperature thermistor using 

constexpr functions in C++.

Example 2 – Generating a lookup table
Thermistors are resistors whose resistance changes with temperature. They are commonly used 

in embedded systems. They usually have a non-linear curve. There are different methods to 

approximate an Analog-to-Digital Converter (ADC) reading from a thermistor into a tempera-

ture. One of the most used methods is the beta coefficient. It is calculated by measuring the 

thermistor’s resistance at two temperature points. It is used to calculate temperature using the 

following equation:1𝑇𝑇 = 1𝑇𝑇0   + 1𝛽𝛽 ln ( 𝑅𝑅𝑅𝑅0) 

In this equation, T0 is a room temperature of 25oC (298.15K) and R0 is the resistance of a therm-

istor at room temperature. Using the beta coefficient (a constant provided by the manufacturer) 

is a simplification of the thermistor’s curve as it relies on measuring the curve only at two points.

The Steinhart-Hart equation provides a more accurate curve-fitting method as it relies on four 

coefficients calculated by measuring the thermistor at four temperature points. The equation is 

shown here:1𝑇𝑇 = 𝐴𝐴 𝐴 𝐴𝐴 ln(𝑅𝑅) + 𝐶𝐶(ln(𝑅𝑅))2 + 𝐷𝐷(ln(𝑅𝑅))3 

Coefficients A, B, C, and D are calculated after measuring the thermistor’s temperature at four 

different temperature points – meaning these are constants that are given for a thermistor by the 

manufacturer. The calculated temperature from the Steinhart-Hart equation is in Kelvins. The 

drawback of the Steinhart-Hart equation is it is computationally heavy for small, embedded targets.
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In this example, we will create a lookup table using the Steinhart-Hart equation and rely on it to 

determine temperature by reading a value from the ADC in our embedded target. As we can see 

from the equation, temperature is a function of resistance and given constants. For a selected 

range of resistance, and with a selected resolution, we will generate a lookup table of temperature 

values. Then, we will simulate a reading of the thermistor resistance and search the lookup table 

to determine the temperature.

We will select a range of resistance that we want to base the lookup table on, and the number of 

points we want to use. For this, we need functionality that will generate an array of numbers in 

the given range that are evenly spaced, also called linear space. Next, we will use that linear space 

as an argument to a signal generator. Let’s start with implementing this as follows:

1.	 Here is the code showing the linear space generator:

#include <array>

#include <cstdio>

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

  constexpr signal() {}

  constexpr signal(T begin, T end) {

    static_assert(N > 1, "N must be bigger than 1"); 

    float step = (end - begin) / (N - 1);

    for (std::size_t i = 0; i < N; i++) {

      this->at(i) = begin + i * step;

    }

  }

};

int main() {

    constexpr signal<float, 10> x_axis(0, 9);

    for(auto elem: x_axis) {

        printf("%.2f, ", elem);

    }

    printf("\r\n");

    return 0;

}
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If we run this program, it will print 10 numbers in the range of 0 to 10, as shown here:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

The numbers printed are generated at compile time by the signal struct. To connect 

this back to our example, imagine that these are the values of resistance for which we 

want to calculate the temperature using the Steinhart-Hart equation. Let’s go through 

the implementation in detail:

•	 The signal is a class template. Template parameters are typename T and 

std::size_t N. They determine the array type that the struct is based on.

•	 The struct derives from std::array<T, N>. We based it on std::array to be able 

to use range-based for loops easily and standard library algorithms.

•	 In the constexpr constructor, we use static_assert to make sure that N is greater 

than 1, and we populate the underlying array with evenly spaced points between 

begin and end.

•	 In main, we provide float and 10 as template arguments to the struct signal, 

and 0 and 9 as begin and end points for the linear space to the constructor. We 

use a range-based for loop to go through elements of the compile-time-generated 

object x_axis and print its elements.

2.	 Next, we will expand the signal struct with an additional constructor that allows us to 

create a signal based on another signal and a lambda we will use to provide a math func-

tion to generate elements of a new signal. The code for a new constructor is shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

  constexpr signal(const signal &sig, auto fun) {

    for (std::size_t i = 0; i < N; i++) {

      this->at(i) = fun(sig.at(i));

    }

  }

};

In this constructor, we initialize elements of a new signal by calling the passed fun on 

elements of the passed signal sig.
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3.	 Now we can create a new signal, as shown in this code:

int main() {

    const auto print_signal = [](auto sig) {

        for(auto elem: sig) {

            printf("%.2f, ", elem);

        }

        printf("\r\n");

    };

    constexpr signal<float, 10> x_axis(0, 9);

    print_signal(x_axis);

    auto sine = signal(x_axis, [](float x){ return std::sin(x);});

    print_signal(sine);

    return 0;

}

If you are following the example using Compiler Explorer, make sure to include the <cmath> 

header as we are using the std::sin function. Running it will give the following output:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

0.00, 0.84, 0.91, 0.14, -0.76, -0.96, -0.28, 0.66, 0.99, 0.41,

In this code, we created a new signal named sine by passing x_axis and the lambda []

(int x){return std::sin(x);} to the newly created constructor.

To connect this with the example, now we can generate a lookup table using simple math 

functions (such as std::sin) and linear space generated with the signal constructor 

from step 1.
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Generating a lookup table
To generate more complex functions, we need to expand the signal class with more functionality:

1.	 First, we will overload the operators * and /, to multiply signals by constants and divide 

constants by elements of signal. The code is shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

  constexpr signal operator*(const T &t) const {

    return signal(*this, [&](T elem)

                  { return elem * t; });

  };

  constexpr signal operator/(const T &t) const {

    return signal(*this, [&](T elem)

                  { return elem / t; });

  };

 };

In this code, we overloaded the operators * and /, enabling multiplication and division 

of a signal with a scalar, as in:

auto result = sig * 2.0f;

The preceding code will create a new signal called result, which will be the result of the 

multiplication of every element of signal sig by scalar 2.0.

2.	 Similarly, we can create a new signal by dividing the existing signal by a scalar, as shown 

here:

auto result = sig / 2.0f;

This code will create a new signal called result, which will be the result of the division 

of every element of signal sig by scalar 2.0.
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3.	 To support scalars from the left side of operators * and /, we need to implement the global 

operators operator* and operator/. We will do so by declaring them as friends to the 

struct signal, as shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

  friend constexpr signal operator*(const T &t, const signal &sig)

  {

    return sig * t;

  }

  friend constexpr signal operator/(const T &t, const signal &sig)

  {

    signal ret;

    for (std::size_t i = 0; i < N; i++) {

      ret.at(i) = t / sig.at(i);

    }

    return ret;

  }

};

The friend function operator* in this code allows scalar multiplication when the scalar 

is on the left-hand side (scalar * signal), which is not possible with the member function 

alone. As multiplication has a commutative property (a * b = b * a), we simply call the 

member function operator* and return the result (return sig * t).

4.	 In the friend function operator/, we perform the following steps:

1.	 Create a new signal, ret.

2.	 Iterate over the elements of the signal sig, and for each element, the scalar t is 

divided by the element.

3.	 We return the signal ret.

5.	 By overloading the operators * and / both as global and as member functions, we can 

now create signals as in the following example:

int main() {

    // ...

    constexpr signal<float, 10> x_axis(0, 9);
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    print_signal(x_axis);

    auto linear_fun = 2.f * x_axis;

    print_signal(linear_fun);

    auto linear_fun2 = linear_fun / 2.f;

    print_signal(linear_fun2);

    return 0;

}

This code will result in the following output:

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

0.00, 2.00, 4.00, 6.00, 8.00, 10.00, 12.00, 14.00, 16.00, 18.00,

0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

As we can see from this output, the originally created x_axis, representing linear space 

from 0 to 9.00 with 10 points, is multiplied by 2.0 to create linear_fun. Then we divide 

linear_fun by 2.0 to create linear_fun2, which matches the x_axis.

6.	 To be able to write the full Steinhart-Hart equation, we also need to overload operators 

+ and -, as shown here:

template <typename T, std::size_t N>

struct signal : public std::array<T, N> {

// ...

  constexpr signal operator+(const T &t) const {

    return signal(*this, [&](T elem)

                  { return elem + t; });

  };

  constexpr signal operator-(const T &t) const {

    return signal(*this, [&](T elem)

                  { return elem - t; });

  };

  constexpr signal operator+(const signal &sig) const {

    signal ret;

    for (std::size_t i = 0; i < N; i++)
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    {

      ret.at(i) = this->at(i) + sig.at(i);

    }

    return ret;

  };

  friend constexpr signal operator+(const T &t, const signal &sig)

  {

    return sig + t;

  }

};

In this code, we overload the following operators:

•	 A member constexpr signal operator+(const T &t), allowing us to add a 

scalar to a signal (signal + scalar)

•	 A member constexpr signal operator-(const T &t), allowing us to subtract 

a scalar from a signal (signal - scalar)

•	 A member constexpr signal operator+(const signal &sig), allowing us to 

add two signals, element by element (signal1 + signal2)

•	 Global constexpr signal operator+(const T &t, const signal &sig), al-

lowing us to add a signal to a scalar (scalar + signal)

Writing a signal representing the Steinhart-Hart equation
Now we have all the elements we need to write a signal that represents the Steinhart-Hart equa-

tion, as shown here:

int main()

{

  constexpr float A = 1.18090254918130e-3;

  constexpr float B = 2.16884014794388e-4;

  constexpr float C = 1.90058756197216e-6;

  constexpr float D = 1.83161892641824e-8;

  constexpr int c_lut_points = 50;

  constexpr signal<float, c_lut_points> resistance(1e3, 10e3);

  constexpr auto temperature_k =
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  1 / (A +

  B * signal(resistance, [](float x)

                    { return std::log(x); }) +

  C * signal(resistance, [](float x)

                    { return std::pow(std::log(x), 2); }) +

  D * signal(resistance, [](float x)

                    { return std::pow(std::log(x), 3); }));

  constexpr auto temperature_celsius = temperature_k - 273.15f;

  std::ofstream file("out.csv");

  file << "Resistance[Ohm], Temperature[Celsius]\n";

  for (int i = 0; i < c_lut_points; i++) {

    file << resistance[i] << ", " << temperature_celsius[i] << "\n";

  }

  return 0;

}

This code generates points from the Steinhart-Hart equation through the following steps:

1.	 Define the A, B, C, and D coefficients.

2.	 Create values for resistance in the range 1 to 10 kOhms across 50 points.

3.	 Calculate values of temperature in Kelvins using the Steinhart-Hart equation in points from 

the generated resistance signal. We convert temperature to Celsius by subtracting 273.15.

4.	 Save the values from the generated resistance and temperature signals into a CSV file (file 

operations require including the <fstream> header).

You can run the full example in a Docker container. Start Visual Studio Code, attach it to the run-

ning container, and open the Chapter11/signal_generator project, as described in Chapter 4, 

and then run the following commands in the Visual Studio Code terminal, or run them directly 

in the container terminal:

$ cd Chapter11/signal_generator

$ cmake -B build

$ cmake --build build

$ ./build/signal_gen
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Running the example will result in a CSV file being created (out.csv). We can generate an image 

from the created CSV file using the following command in the terminal:

$ graph out.csv -o curve.png

We can transfer the generated image using the docker cp command from the host machine:

$ docker cp dev_env:/workspace/Cpp-in-Embedded-Systems/Chapter11/signal_
generator/curve.png

This command will transfer the generated image curve.png to the host machine. We can also 

see the same image here:

Figure 11.1 – Steinhart-Hart curve

Figure 11.1 depicts the calculated Steinhart-Hart curve. Values for resistance and temperature 

were generated at compile time using the signal struct. Next, we will use the generated curve 

in Renode to read a temperature from a simulated thermistor using the ADC. Here is an image of 

a circuit showing how the thermistor is connected to the microcontroller:

Figure 11.2 – Thermistor circuit
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Figure 11.2 depicts a voltage divider with a thermistor. If we measure the voltage on the ADC pin, 

we can calculate the thermistor’s resistance using the following equation:𝑅𝑅𝑇𝑇 = 𝑅𝑅2 ( 𝑉𝑉𝑐𝑐𝑐𝑐𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 − 1) 

In the preceding equation:

•	 RT is the calculated resistance of the thermistor.

•	 R2 is the resistance of a resistor with a known value.

•	 VCC is the power supply voltage.

•	 VADC is the voltage measured by the ADC.

We can model a voltage divider using a simple struct in C++, shown here:

struct voltage_divider {

        units::resistance r2;

        units::voltage vcc;

        units::resistance get_r1(units::voltage vadc) {

            return r2 * (vcc/vadc - 1);

        }

    };

voltage_divider divider{10e3_Ohm, 3.3_V};

This code shows the struct voltage_divider. We will go through its details:

•	 It uses strong type resistance and voltage defined in namespace units. You can check the 

implementation details for these strong types in the project folder, Chapter11/compile_

time/util.

•	 We instantiate an object of voltage_divider using list initialization as in voltage_divider 

divider{10e3_Ohm, 3.3_V}. 10e3_Ohm and 3.3_V are user-defined literals for types 

resistance and voltage.

•	 The struct has a single method, units::resistance get_r1(units::voltage vadc). 

It calculates the R1 value from a voltage divider circuit based on the provided voltage on 

ADC. In our case, this is the thermistor’s resistance.



Compile-Time Computation234

Analyzing the usage example firmware code
Next, we will go through the firmware code in a while loop in the main function from Chapter11/

compile_time/app/src/main_lookup_table.cpp. It is shown here:

auto adc_val = adc.get_reading();

if(adc_val) {

  auto adc_val_voltage = *adc_val;

  auto thermistor_r = divider.get_r1(adc_val_voltage);

  auto it = std::lower_bound(resistance.begin(),    

                resistance.end(), thermistor_r.get());

  if(it != resistance.end()) {

     std::size_t pos = std::distance(resistance.begin(), it);

     float temperature = temperature_celsius.at(pos);

     printf("%d mV, %d Ohm, %d.%d C\r\n",

           static_cast<int>(adc_val_voltage.get_mili()),

           static_cast<int>(thermistor_r.get()),

           static_cast<int>(temperature),

           static_cast<int>(10*(temperature-std::floor(temperature))) );

    }

  }

hal::time::delay_ms(200);

Let us analyze this code in detail:

1.	 We are calling the get_reading method on the object adc. It is of type hal::adc_stm32, 

and it returns std::expected<units::voltage, adc::error>. It is an error-handling 

technique that we covered in Chapter 7. You can check the implementation details of the 

adc_stm32 class in the project folder, Chapter11/compile_time/hal/adc.

2.	 If the call to get_reading was successful, we dereference the returned object to get ac-

cess to the voltage, which we pass to voltage_divider's get_r1 method to calculate the 

thermistor’s value.

3.	 Next, we use the algorithm std::lower_bound to get an iterator to the first element in the 

resistance signal that is not ordered before calculating the thermistor’s value. If we find 

such an element, we calculate its position using std::distance, and index temperature_

celsius to get the temperature value.
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4.	 Finally, we print the ADC’s voltage, the thermistor’s resistance, and the temperature 

value. Note that we printed the float value of temperature using ints, as printing floats 

increases the binary size of the firmware.

To run the firmware in the Renode simulator on the STM32 target, start Visual Studio Code, at-

tach it to the running container, and open the Chapter11/compile_time project, as described 

in Chapter 4, then run the following commands in the Visual Studio Code terminal, or run them 

directly in the container terminal:

$ cd Chapter11/compile_time

$ cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel -DMAIN_CPP_FILE_NAME=main_
lookup_table.cpp

$ cmake --build build --target run_in_renode

To simulate voltage on the ADC, please enter the following command in the terminal running 

Renode:

$ adc FeedVoltageSampleToChannel 0 1700 3

The preceding command will feed a voltage of 1700 mV to the ADC in three successive readings. 

This will result in the following output:

1699 mV, 9412 Ohm, 26.2 C

This command shows that for a value of 1700 mV on the ADC, we calculated a thermistor value of 

9412 Ohms, resulting in a temperature of 26.20C. As an exercise, feed the simulation with different 

ADC voltage values and compare the results with the curve graph from previous steps.

The constexpr specifier is a flexible tool in C++ allowing us to run a function at both compile 

time and runtime. If we want to make sure that a function is evaluated only at compile time, we 

can use the consteval specifier.

consteval specifier
The consteval specifier may be applied only to functions. It specifies that a function is a so-called 

immediate function and that every call to it must result in a compile-time constant. Let’s go 

through the following simple example:

constexpr int square(int x) {

    return x*x;

}

int main() {
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    constexpr int arg = 2;

    int ret = square(arg);

    return ret;

}

If you run this example in Compiler Explorer using the x86-64 GCC 14.2 compiler, without op-

timization enabled, we can observe the following:

•	 The program returns 4.

•	 The resulting assembly is small, and it just moves 4 to the return register.

•	 Removing the constexpr specifier from the variable arg will result in the function square 

being generated and a call to it in the main function.

Now, let’s change the function square constexpr specifier to consteval, as shown here:

consteval int square(int x) {

    return x*x;

}

int main() {

    constexpr int arg = 2;

    int ret = square(arg);

    return ret;

}

If you run the program in Compiler Explorer, it will return 4 and result in small assembly code. 

However, if we now remove the constexpr specifier from the variable arg, the compilation will 

fail with the following error:

<source>: In function 'int main()':

<source>:7:21: error: call to consteval function 'square(arg)' is not a 
constant expression

    7 |     int ret = square(arg);

      |               ~~~~~~^~~~~

<source>:7:21: error: the value of 'arg' is not usable in a constant 
expression

<source>:6:9: note: 'int arg' is not const

    6 |     int arg = 2;

      |         ^~~
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The consteval specifier ensures that a function is evaluated only at compile time. This prevents the 

function from being accidentally run at runtime, which could happen with a constexpr function.

Summary
In this chapter, we explored techniques for compile-time computation in C++. We covered the 

basics of TMP and provided an in-depth explanation of the constexpr specifier, using examples 

relevant to embedded systems.

With the knowledge from this chapter, you can generate lookup tables and convert human-read-

able addresses, UUIDs, and similar data into arrays used by communication stacks, all at compile 

time. This allows you to write expressive code that generates complex mathematical signals 

without consuming extra memory or processing time.

Next, we will go over the techniques used in writing a HAL in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems




Part 4
Applying C++ to Solving 

Embedded Domain 
Problems

This part focuses on applying everything you’ve learned by solving problems from the embedded 

domain. You will go through writing a type-safe, compile-time checked HAL, learn how to work 

effectively with C libraries, and study design patterns such as Adapter, State, and Command. 

You will also learn how to apply RAII to manage resources like the file system. The part wraps 

up with an overview of libraries and frameworks useful for embedded development and a look 

at the SOLID principles.

This part has the following chapters:  

•	 Chapter 12, Writing C++ HAL

•	 Chapter 13, Working with C Libraries

•	 Chapter 14, Enhancing Super-Loop with Sequencer

•	 Chapter 15, Practical Patterns – Building a Temperature Publisher

•	 Chapter 16, Designing Scalable Finite State Machines

•	 Chapter 17, Libraries and Frameworks

•	 Chapter 18, Cross-Platform Development





12
Writing C++ HAL

A Hardware Abstraction Layer (HAL) is a core software component in embedded projects. It 

simplifies interactions with hardware peripherals by providing an easy-to-use interface that 

abstracts the hardware details. The HAL manages the reading and writing of memory-mapped 

peripheral registers, allowing you to use peripherals such as GPIOs, timers, and serial commu-

nication interfaces, without dealing directly with low-level hardware specifics. It often supports 

multiple devices within the same family.

By using a HAL, firmware becomes more portable across different devices and similar families 

from the same vendor. It hides the register layouts of memory-mapped peripherals, making it 

easier to reuse drivers and business logic on various devices. The HAL handles platform-specific 

details, enabling developers to focus on the application rather than hardware nuances. It also 

manages differences among different series of microcontrollers (MCUs).

It’s recommended to use vendor-provided HALs, typically delivered as C libraries, because they 

are well-tested and regularly maintained. Still, in some cases, it may be needed to work directly 

with memory-mapped peripherals, thus, in this chapter, we will explore C++ techniques that can 

help you write safer and more expressive HALs. In this chapter, we will cover the following topics:

•	 Memory-mapped peripherals

•	 Timers
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Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter12). To get the most out of this chapter, run the 

examples in the Renode simulator.

Memory-mapped peripherals
Memory-mapped peripherals allow programs to control hardware devices by reading from and 

writing to specific memory addresses. Both peripheral registers and RAM are mapped to the same 

address space, making communication with hardware registers as simple as writing and reading 

to a pointer that points to those locations.

In previous examples in this book, we used an ST-provided HAL written in C, which controls 

hardware peripherals through Common Microcontroller Software Interface Standard (CMSIS) 

headers.

CMSIS is a vendor-independent HAL and software library collection for Arm Cortex-based micro-

controllers. Developed by Arm, it standardizes hardware access and configuration, simplifying 

software development and improving code portability across different manufacturers. Each micro-

controller vendor provides its own CMSIS implementation, adapting the core APIs and drivers to 

their specific devices. Next, we will explore CMSIS implementation of access to memory-mapped 

peripherals for the STM32F072 microcontroller.

CMSIS memory-mapped peripherals
Access to registers in CMSIS is modeled through pointers to structs that describe register layout. 

CMSIS defines macros representing pointers to memory-mapped peripherals.

Structs, according to CMSIS naming conventions, are named using the peripheral name abbre-

viation and _TypeDef postfix. The reset and clock control (RCC) peripheral struct is named 

RCC_TypeDef. It is defined in example projects in the platform/CMSIS/Device/ST/STM32F0xx/

Include/stm32f072xb.h file, as shown here:

typedef struct

{

  __IO uint32_t CR;         /* Address offset: 0x00 */

  __IO uint32_t CFGR;      /* Address offset: 0x04 */

  __IO uint32_t CIR;       /* Address offset: 0x08 */

  __IO uint32_t APB2RSTR;  /* Address offset: 0x0C */

  __IO uint32_t APB1RSTR;  /* Address offset: 0x10 */

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter12
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter12
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  __IO uint32_t AHBENR;    /* Address offset: 0x14 */ 

  __IO uint32_t APB2ENR;   /* Address offset: 0x18 */ 

  __IO uint32_t APB1ENR;   /* Address offset: 0x1C */  

  __IO uint32_t BDCR;      /* Address offset: 0x20 */  

  __IO uint32_t CSR;       /* Address offset: 0x24 */   

  __IO uint32_t AHBRSTR;   /* Address offset: 0x28 */  

  __IO uint32_t CFGR2;     /* Address offset: 0x2C */

  __IO uint32_t CFGR3;     /* Address offset: 0x30 */

  __IO uint32_t CR2;       /* Address offset: 0x34 */

} RCC_TypeDef;

In the same header file, along with the RCC_TypeDef struct, the following macros are defined:

#define PERIPH_BASE           0x40000000UL

/*!< Peripheral memory map */

#define APBPERIPH_BASE        PERIPH_BASE

#define AHBPERIPH_BASE       (PERIPH_BASE + 0x00020000UL)

/*!< AHB peripherals */

#define RCC_BASE            (AHBPERIPH_BASE + 0x00001000UL)

/*!< Peripheral_declaration */

#define RCC                 ((RCC_TypeDef *) RCC_BASE)

This code is part of the CMSIS header stm32f072xb.h, and it’s all we need to configure the RCC 

register. We are setting up clock configuration in the SystemInit function, which is called before 

the main function (as you were able to see in Chapter 4). The following code snippet is from the 

SystemInit function:

/* Set HSION bit */

RCC->CR |= (uint32_t)0x00000001U;

In this code, we are setting up the HSION bit of the clock control register (CR) or the RCC peripheral, 

and we know we are doing that because of the comment in the code. Also, nothing is preventing 

us from setting CR to any random value. Here is an example of usage of the clock configuration 

register (CFGR) from the RCC peripheral:

/* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] 
and PLLNODIV bits */

RCC->CFGR &= (uint32_t)0x08FFB80CU;
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This code sets PLL division, various prescaler, and clock settings. It’s not quite obvious which 

settings are applied from the hex value 0x08FFB80CU.

Even though this approach is common, there are several issues with modeling access to peripherals 

using register structs and a pointer pointing to the peripheral’s base address:

•	 The first is reduced readability. We can write arbitrary uint32_t values in hex format, 

making the code meaningless and requiring us to refer to reference manuals of micro-

controllers.

•	 As we can write any value we want to a register, we can easily write wrong or even ran-

dom values.

•	 Individual registers of a peripheral in a struct must be ordered according to their memory 

layout. Members named RESERVERDn are used to add space into the structure for adjusting 

the addresses of the peripheral registers and to prevent padding.

•	 CMSIS headers may contain macros defining bit masks for accessing individual settings 

in a register, which simplifies access to peripheral registers. Still, these macros are not 

making the code any safer, just easier to work with.

Let’s see how we can utilize C++ to address these concerns, making the code safer and more 

readable.

Memory-mapped peripherals in C++
We will use the knowledge we gained in previous chapters to create an expressive and type-safe 

interface to access memory-mapped peripherals in C++. We will create an interface with the 

following qualities:

•	 Read and write access control to a hardware register

•	 Type-safe write to a register

•	 Expressive and easy to use

Let us start with a basic implementation of an interface representing a memory-mapped register 

that will match the CMSIS approach in functionality. The code is shown here:

struct read_access{};

struct write_access{};

struct read_write_access : read_access, write_access {};

template<std::uintptr_t Address, typename Access = read_write_access, 
typename T = std::uint32_t>
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struct reg {

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<read_access, Access_>, T> 

read()

{

    return *reinterpret_cast<volatile T*>(Address);

}

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<write_access, Access_>, void>

write(T val)

{

    *reinterpret_cast<volatile T*>(Address) = val;

}

};

In this code, the class template reg models a hardware register. It has the following template 

parameters:

•	 uintptr_t Address: The memory address of the hardware register

•	 typename Access: The access rights for the register (defaults to read_write_access)

•	 typename T: The data type matching the size of the register (defaults to std::uint32_t)

The class template reg has two static methods: read and write. These are used to read from and 

write to a register, respectively. Both methods are enabled or disabled at compile time using 

SFINAE, which we covered in Chapter 8. We are using the following types of access control:

•	 struct read_access

•	 struct write_access

•	 struct read_write_access: This inherits from both read_access and write_access

To enable and disable write and read methods at compile time using SFINAE, we made both 

methods template functions. This allows us to use the class template enable_if at the return 

type of these methods to either enable or disable them, depending on the condition provided to it.

The template parameter for both write and read is Access_, which defaults to Access. It ensures 

that SFINAE works correctly by making the substitution dependent on a template parameter of 

the function itself.
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We are enabling the read method using std::enable_if_t<std::is_base_of_v<read_access, 

Access_>, T>. This means that if std::is_base_of_v<read_access, Access_> is true (i.e., if 

Access_ is derived from or is the same as read_access), std::enable_if_t resolves to T, and the 

function is enabled. Otherwise, it results in a substitution failure, and the function is not included 

in the overload set. We are enabling the write method in a similar fashion, by checking whether 

Access_ type is derived from or the same as write_access.

We use reinterpret_cast<volatile T*> to convert the integer template parameter Address 

into a pointer to a volatile variable of type T (which defaults to std::uint32_t). The volatile 

keyword informs the compiler that the value at this memory location can change at any time 

outside the program’s control – by hardware. This prevents the compiler from applying certain 

optimizations that might omit necessary reads or writes to this address.

Without volatile, the compiler might assume that multiple reads from the same address yield 

the same value or that writes to the address can be reordered or even omitted, which can lead to 

incorrect behavior when interacting with hardware.

As we discussed in Chapter 9, casting an integer to a pointer using reinterpret_cast is consid-

ered an implementation-defined behavior in C++. This means the C++ standard doesn’t specify 

exactly how it should work, and different compilers or platforms might handle it differently. 

Writing directly to a specific memory location is inherently unsafe and relies on behavior that 

isn’t guaranteed to be portable across all systems. Therefore, we need to be cautious about the 

portability of this solution, as some platforms may implement pointer conversions differently.

Here are a few examples of using the class template reg:

using rcc = reg<0x40021000>;

auto val = rcc::read(); // ok

rcc::write(0xDEADBEEF); // ok

using rcc_read = reg<0x40021000, read_access>;

auto val = rcc_read::read(); // ok

rcc_read::write(0xDEADBEEF); // compiler-error, no write access

using rcc_write = reg<0x40021000, write_access>;

auto val = rcc_write::read(); // compiler-error, no read access

rcc_write::write(0xDEADBEEF); // ok
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These examples demonstrate the usage of the implemented interface for accessing memo-

ry-mapped peripherals. When defining types using the class template reg, we provide it with 

the address of a register and write access if we are working with write-only or read-only registers. 

The default access type allows us both read and write privileges.

The preceding solution is as effective as the CMSIS approach. You can experiment with the full 

example and compare binary sizes by running the full example in Renode. Start Visual Studio 

Code, attach it to the running container, open the Chapter12/cpp_hal project as described in 

Chapter 4, and run the following commands in the Visual Studio Code terminal, or run them 

directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
basic_reg.cpp

$ cmake --build build --target run_in_renode

Our current solution still allows us to write arbitrary values to registers. To address this, we will 

use strong types based on enum classes to model bit fields used to set different settings in registers.

Type-safe memory-mapped peripherals in C++
To prevent arbitrary writings to a register using the class template reg, we will add a new static 

method, set, which will accept only types meeting certain criteria. We will model these types by 

creating a BitFieldConcept. We covered concepts in Chapter 8. Also, we will remove public access 

to the write method and put it instead in the private section. The modified code is shown here:

template<typename BitField, typename Reg, typename T>

concept BitFieldConcept =

    std::is_same_v<Reg, typename BitField::reg> &&

    std::is_enum_v<typename BitField::value> &&

    std::is_same_v<std::underlying_type_t<typename

BitField::value>, T>;

template<std::uintptr_t Address, typename Access = read_write_access, 
typename T = std::uint32_t>

struct reg {

using RegType = T;

     // Type alias for the current instantiation
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using ThisReg = reg<Address, Access, T>;

template<typename BitField>

requires BitFieldConcept<BitField, ThisReg, T>

static void set(BitField::value bits_val)

{

    auto reg_value = read();

    reg_value &= ~BitField::c_mask;

    reg_value |= (static_cast<T>(bits_val) <<

          BitField::c_position) & BitField::c_mask;

    write(reg_value);

}

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<read_access, Access_>, T> 

read()

{

    return *reinterpret_cast<volatile T*>(Address);

}

private:

   

template <typename Access_ = Access>

static std::enable_if_t<std::is_base_of_v<write_access, Access_>, void> 

write(T val)

{

    *reinterpret_cast<volatile T*>(Address) = val;

}

};

The template method set has a single template parameter – type BitField. We use BitFieldConcept 

to impose the following requirements on the BitField:

•	 Reg must be the same as BitField::reg. This ensures the bit field is associated with the 

correct register.

•	 BitField::value must be an enum.

•	 The underlying type of the BitField::value enum must be T. This ensures that values 

represented by the enum can fit in the registers.
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The set function parameter is BitField::value bits_val. The function itself is simple, and it 

performs the following operations:

•	 Reads the current register value

•	 Clears the bits specified by BitField::c_mask

•	 Sets the new bits by shifting bits_val to the correct position (BitField::c_position) 

and applying the mask

•	 Writes the modified value back to the register

To use the set function, we need to define types that describe the register’s bit fields and that 

meet the requirements imposed by the BitFieldConcept.

Modeling HSION and HSITRIM bit fields from the RCC register
Let us examine bit fields in the RCC CR register defined in the STM32F0x2 reference manual 

document, as shown in Figure 12.1:

Figure 12.1 – RCC CR register

Figure 12.1 depicts bit fields in the RCC CR register. Let us define a struct hsion that describes the 

HSI clock enable bit field from the RCC CR register. It has only one bit on position 0, so we can 

model it as follows:

using rcc = reg<0x40021000>;

struct hsion {

    using reg = rcc;

    using T = reg::RegType;

    static constexpr T c_position = 0U;

    static constexpr T c_mask = (1U << c_position);

    enum class value : T {

        disable = 0U,
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        enable  = 1U,

    };

};

In this code, we declare type rcc as an instance of the class template reg by providing it with the 

address of the RCC register. Then, we create a struct hsion with the following properties:

•	 A public typedef member reg, which we set to rcc. This “maps” hsion to the rcc register 

thanks to BitFieldConcept.

•	 The constexpr variables c_position and c_mask, used for bit manipulation by the set 

method.

•	 An enum class value, defining enable and disable.

We can use the hsion struct to enable or disable the HSI clock using the following code:

rcc::set<hsion>(hsion::value::enable);

rcc::set<hsion>(hsion::value::disable);

This code allows us to safely set bits in a register. It is also expressive: the syntax rcc::set<hsi

on>(hsion::value::enable); clearly communicates the intent – setting the hsion bit field to 

enable on the rcc register.

As we can see in Figure 12.1, most of the defined bit fields in the CR register are enable/disable 

bits. Exceptions are:

•	 HSICAL[7:0]: HSI clock calibration: These bits are automatically initialized at startup 

and can be adjusted by software via the HSITRIM setting.

•	 HSITRIM[4:0]: HSI clock trimming: These bits offer an additional user-programmable 

trimming value added to the HSICAL[7:0] bits. This setting allows adjustments for voltage 

and temperature variations that may affect the HSI frequency.

HSICAL bits are initialized at startup, meaning we shouldn’t modify them. HSITRIM bits are us-

er-programmable, and they occupy 5 bits. Defining all combinations of 5 bits in the BitField 

value enum wouldn’t be practical, so we will approach this by providing value through a template 

parameter, as shown in the code here:

template<auto Bits>

struct hsi_trim {

    using reg = rcc;

    using T = reg::RegType;
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    static_assert(std::is_same_v<T, decltype(Bits)>);

    static constexpr T c_position = 3;

    static constexpr T c_mask = (0x1F << c_position);

    static_assert(Bits <= 0x1F);

    enum class value : T {

        val = Bits

    };

};

In this code, we defined the class template hsitrim with the auto template parameter Bits. 

The auto keyword is used to indicate that we are using a non-type template parameter. We use 

static_assert to make sure that the type of provided parameter Bits (decltype(Bits)) is the 

same as the underlying registers type to satisfy requirements imposed by BitFieldConcept.

We encode the enum class value val with the Bits. This encodes the value in the type itself and 

makes it possible to use it with the reg struct set method. We also utilize static_assert to 

make sure that the provided value fits in the allocated number of bits – static_assert(Bits <= 

0x1F). Again, we are utilizing compile-time operations to ensure type safety. Here is an example 

of using the hsitrim struct:

rcc::set<hsi_trim<0xFLU>>(hsi_trim<0xFLU>::value::val);

This code sets the hstrim value in the rcc register to 0xF. You can experiment with the full exam-

ple in Renode. Start Visual Studio Code, attach it to the running container, open the Chapter12/

cpp_hal project, as described in Chapter 4, and run the following commands in the Visual Studio 

Code terminal, or run them directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
type_safe_reg.cpp

$ cmake --build build --target run_in_renode
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Generic versions of hsion and hsi_trim
To enable the reuse of bit fields that have a single bit (enable/disable) such as hsion, we will 

define the class template reg_bits_enable_disable, as shown here:

template<typename Reg, uint32_t Pos>

struct reg_bits_enable_disable {

    using reg = Reg;

    using T = reg::RegType;

    static constexpr T c_position = Pos;

    static constexpr T c_mask = (0x1UL << c_position);

    enum class value : T {

        disable = 0,

        enable = 1

    };

};

This defined template type, reg_bits_enable_disable, could be used to define the hsion type, 

as shown in the following code:

using hsion = reg_bits_enable_disable<rcc, 0U>;

Next, we will create a generic version of the type used to set multiple fields with a value, such as 

hsi_trim. We will call it reg_bits, and the code is shown here:

template<auto Bits, typename Reg, uint32_t Mask, uint32_t Pos = 0>

struct reg_bits {

    using reg = Reg; using T = reg::RegType;

    static_assert(std::is_same_v<T, decltype(Bits)>);

    static constexpr T c_position = Pos;

    static constexpr T c_mask = (Mask << c_position);

    static_assert(Bits <= Mask);
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    enum class value : T {

        val = Bits

    };

};

We could use the generic type reg_bits to define the hsi_trim template type, as shown here:

template<auto Bits>

using hsi_trim = reg_bits<Bits, rcc, 0x1F, 3U>;

Next, we will explore how to use C++ to create templates for peripherals that are similar but also 

have some implementation differences.

Timers
STM32F072 has multiple timers, including TIM2 and TIM3. TIM2 is a 32-bit timer and TIM3 is a 

16-bit timer.

We will create a template class timer that will depend on timer traits structures containing tim-

er-specific details. Here is the code for timer traits structures:

struct timer2_traits {

    constexpr static std::uintptr_t base_address = 0x40000000;

    constexpr static IRQn_Type irqn = TIM2_IRQn;

    constexpr static std::uint32_t arr_bit_mask = 0xFFFFFFFF;

};

struct timer3_traits {

    constexpr static std::uintptr_t base_address = 0x40000400;

    constexpr static IRQn_Type irqn = TIM3_IRQn;

    constexpr static std::uint32_t arr_bit_mask = 0xFFFF;

};
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In this code, timer2_traits and timer3_traits are traits structures that encapsulate the hard-

ware-specific details of TIM2 and TIM3 timers, respectively. They have the following members:

•	 base_address: The base memory address of the timer’s register map

•	 irqn: The interrupt request number associated with the timer

•	 arr_bit_mask: The bit mask for the auto-reload register (ARR):

•	 For TIM2, it’s 0xFFFFFFFF (32-bit timer).

•	 For TIM3, it’s 0xFFFF (16-bit timer).

Next, let’s look at the template class timer:

template <typename TimerTraits>

struct timer {

    constexpr static std::uintptr_t base_address =

                                    TimerTraits::base_address;

    using cr1 = reg<base_address + 0x00>;

    using dier = reg<base_address + 0x0C>;

    using sr = reg<base_address + 0x10>;

    using psc = reg<base_address + 0x28>;

    using arr = reg<base_address + 0x2C>;

    

    template<auto Bits>

    using psc_bits = reg_bits<Bits, psc, static_cast<uint32_t>(0xFFFF)>;

    template<auto Bits>

    using arr_bits = reg_bits<Bits, arr, TimerTraits::arr_bit_mask>;

    using uie = reg_bits_enable_disable<dier, 0UL>;

    using cen = reg_bits_enable_disable<cr1, 0UL>;

    using uif = reg_bits_enable_disable<sr, 0UL>;

    template<std::uint32_t Period>

    static void start() {
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        // a magic number prescaler value

        // for 1ms timer resolution

        constexpr std::uint32_t prescaler = 9999;

        constexpr std::uint32_t auto_reload = Period - 1;

        psc::template set<psc_bits<prescaler>>

                    (psc_bits<prescaler>::value::val);

        arr::template set<arr_bits<auto_reload>>

                    (arr_bits<auto_reload>::value::val);

        dier::template set<uie>(uie::value::enable);

        NVIC_SetPriority(TimerTraits::irqn, 1);

        NVIC_EnableIRQ(TimerTraits::irqn);

        cr1::template set<cen>(cen::value::enable);

    }

};

In this code, we defined a template class timer with template parameter TimerTraits – a traits 

class that provides hardware-specific constants. The timer class template provides a generic 

interface to configure and control timers, customized for each specific timer via TimerTraits.

Please note that for the sake of simplicity of the example, this is the minimum code needed to 

set up the STM32 timer peripheral.

Within the timer class, we define register type aliases, as follows:

constexpr static std::uintptr_t base_address = TimerTraits::base_address;

using cr1 = reg<base_address + 0x00>;

using dier = reg<base_address + 0x0C>;

using sr = reg<base_address + 0x10>;

using psc = reg<base_address + 0x28>;

using arr = reg<base_address + 0x2C>;

These type aliases represent the timer’s hardware registers, each mapped to a specific memory 

address. Each register is an instantiation of the reg class template, which provides read/write 

access to hardware registers.
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Next, we define type aliases for BitFields:

template<auto Bits>

using psc_bits = reg_bits<Bits, psc, static_cast<uint32_t> (0xFFFF)>;

template<auto Bits>

using arr_bits = reg_bits<Bits, arr, TimerTraits::arr_bit_mask>;

using uie = reg_bits_enable_disable<dier, 0UL>;

using cen = reg_bits_enable_disable<cr1, 0UL>;

using uif = reg_bits_enable_disable<sr, 0UL>;

In this code, we instantiate bit fields using the class templates reg_bits and reg_bits_enable_

disable.

Finally, we define the template static method start in the class template timer. This static func-

tion sets up the timer with the desired period and starts it. The code executes the following steps:

1.	 Calculate Prescaler and Auto-Reload values. The function uses the template parameter 

Period to calculate these values.

2.	 Set Prescaler (PSC) and Auto-Reload (ARR) registers.

3.	 Enable the update interrupt on the DIER register. It uses the uie bit field to enable the 

update interrupt in the DIER register.

4.	 Configure NVIC for timer interrupts using CMSIS functions.

5.	 Start the timer. It uses the cen bit field to enable the timer counter in the CR1 register.

Let’s now see how we can use the provided timer template class:

using timer2 = timer<timer2_traits>;

using timer3 = timer<timer3_traits>;

extern "C" void TIM2_IRQHandler(void)

{

    if (timer2::sr::read() & TIM_SR_UIF)

    {

        timer2::sr::set<timer2::uif> (timer2::uif::value::disable);

        printf("TIM2 IRQ..\r\n");

    }

}

extern "C" void TIM3_IRQHandler(void)
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{

    if (timer3::sr::read() & TIM_SR_UIF)

    {

        timer3::sr::set<timer3::uif> (timer3::uif::value::disable);

        printf("TIM3 IRQ..\r\n");

    }

}

int main()

{

    timer2::start<1000>();

    timer3::start<500>();

    while(true)

    {

    }

}

In this code, we create the type aliases timer2 and timer3 and implement Interrupt Request 

(IRQ) functions for the TIM2 and TIM3 interrupts. In the IRQs, we clear interrupt flags. We make 

calls to start functions of types timer2 and timer3 in the main function.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running container, 

open the Chapter12/cpp_hal project, as described in Chapter 4, and run the following commands 

in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DMAIN_CPP_FILE_NAME=main_
timer_peripheral.cpp

$ cmake --build build --target run_in_renode

In this section, we learned how to create a generic, template-based timer interface by utiliz-

ing C++ templates and traits classes. By defining TimerTraits structures (timer2_traits and 

timer3_traits) that encapsulate hardware-specific details of the TIM2 and TIM3 timers, we can 

instantiate a flexible timer class template that abstracts the configuration and control of different 

timers. This approach offers two main benefits: it increases type safety by using templates to en-

force correct usage at compile time, and it results in code that is as efficient as traditional C HAL 

implementations because the use of templates and constexpr allows the compiler to optimize 

the code thoroughly.
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Summary
In this chapter, we learned techniques that we can apply to create safer HAL code in C++. We 

covered the implementation of memory-mapped peripherals. The design utilizes templates and 

advanced techniques such as SFINAE, which we discovered in Chapter 8. We applied the knowl-

edge from previous chapters in the embedded systems domain.

We also learned how to design classes that implement generic behavior and depend on traits 

classes to supply them with specific details. The code we developed is as efficient as a hand-cod-

ed (CMSIS-based) solution, thanks to the usage of templates and compile-time computations, 

enabling compiler optimizations.

In the next chapter, we will cover working with C libraries in C++.
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Working with C Libraries

In Chapter 6, we discussed interoperability between C and C++. We learned about language 

linkage and how to use it to include C libraries in a C++ project. From the technical standpoint, 

that’s all we need to use C in C++.

In this chapter, we’ll focus on software development techniques for integrating C libraries into a 

C++ project to enhance code flexibility. Since many C++ projects still rely on vendor-provided C 

hardware abstraction layers (HALs), we’ll concentrate on how to effectively incorporate these 

C libraries into our projects.

Additionally, this chapter will cover the Resource Acquisition is Initialization (RAII) paradigm 

and explain why it’s particularly beneficial in embedded systems. By automatically managing 

resource allocation and deallocation, RAII greatly reduces the risk of leaks and other resource 

misuse issues, which is especially important in resource-limited embedded environments.

In this chapter, we’re going to cover the following main topics: 

•	 Using C HAL in C++ projects

•	 Static classes

•	 Using RAII for wrapping LittleFs C library

Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter13). To get the most out of this chapter, run the 

examples in the Renode simulator.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter13
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter13
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Using C HAL in C++ projects
In Chapter 12, we explored the benefits of using C++ for HAL development. However, despite these 

advantages, target vendors provide HALs as C libraries. These libraries have been thoroughly 

tested on millions of devices worldwide, and vendors usually maintain them well, offering reg-

ular updates. Thus, it makes more sense to use them rather than re-implement the HAL in C++.

Next, we will create an interface-based design for the UART peripheral, which will provide us 

with a more flexible software design and allow us to decouple components that are using the 

UART interface from low-level details.

UART interface for flexible software design
In Chapter 5, we covered the importance of interfaces for flexible software design. There, we had an 

uart interface class that was implemented by the uart_stm32 class. The gsm_lib class depended 

on the uart interface, meaning we can reuse it with different uart interface implementations.

The uart_stm32 class from Chapter 5 had a simple implementation for demo purposes. It used 

the printf and putc functions from the C standard library to write messages on standard output. 

We will now go through the actual implementation of the uart_stm32 class that’s already been 

used in all the examples in the book’s GitHub repo, enabling us to see the output in the Renode 

simulator. Let’s start from the uart interface class with the code shown here:

#include <cstdint>

#include <span>

namespace hal

{

class uart

{

  public:

    virtual void init(std::uint32_t baudrate) = 0;

    virtual void write(std::span<const char> data) = 0;

};

}; // namespace hal
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The uart interface is a simple class with two virtual methods:

•	 virtual void init(std::uint32_t baudrate): A method used to initialize the UART 

peripheral with a single parameter – baudrate.

•	 virtual void write(std::span<const char> data): A method used to send data over 

the UART peripheral. It has a std::span<const char> parameter in contrast to the usual 

C approach with a pointer to the data buffer and length. Using std::span increases the 

memory safety of the code.

Next, let us go through the uart_stm32 class definition:

#include <span>

#include <cstdint>

#include <uart.hpp>

#include <stm32f0xx_hal.h>

#include <stm32f072xb.h>

namespace hal

{

class uart_stm32 : public uart

{

  public:

    uart_stm32(USART_TypeDef *inst);

    void init(std::uint32_t baudrate = c_baudrate_default);

    void write(std::span<const char> data) override;

  private:

    UART_HandleTypeDef huart_;

    USART_TypeDef *instance_;

    std::uint32_t baudrate_;

    static constexpr std::uint32_t c_baudrate_default = 115200;

};

}; // namespace hal
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In the uart_stm32 class definition, we can notice the following:

•	 Overridden virtual methods init and write from the uart interface.

•	 A constructor accepting a pointer to USART_TypeDef. This type is a struct that describes 

the UART peripheral register layout in the CMSIS header stm32f072xb.h.

•	 Among the private members, we see UART_HandleTypeDef, a type defined in ST HAL in 

the file stm32f0xx_hal_uart.h.

Next, let us go through the implementation of the constructor and methods from the uart_stm32 

class in this code:

hal::uart_stm32::uart_stm32(USART_TypeDef *inst): instance_(inst)

{

}

In this code, we see the implementation of the uart_stm32 constructor. It just sets the private 

member USART_TypeDef *instance_ using the initializer list syntax. CMSIS defines the macros 

USART1, USART2, USART3, and USART4, which specify the addresses of these peripherals and which 

we can use to initialize the uart_stm32 object.

The uart interface defines the init method, as UART peripheral initialization depends on other 

hardware initializations (i.e., clock configuration). If we implemented the initialization within 

the constructor, we might run into issues if someone defines a global or static uart_stm32 

object. The init method is shown here:

void hal::uart_stm32::init(std::uint32_t baudrate)

{

    huart_.Instance = instance_;

    huart_.Init.BaudRate = baudrate;

    huart_.Init.WordLength = UART_WORDLENGTH_8B;

    huart_.Init.StopBits = UART_STOPBITS_1;

    huart_.Init.Parity = UART_PARITY_NONE;

    huart_.Init.Mode = UART_MODE_TX_RX;

    huart_.Init.HwFlowCtl = UART_HWCONTROL_NONE;

    huart_.Init.OverSampling = UART_OVERSAMPLING_16;

    huart_.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

    huart_.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;

    huart_.MspInitCallback = nullptr;

    HAL_UART_Init(&huart_);

}
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In the init method, we initialize the member UART_HandleTypeDef huart_ with the following 

configuration:

•	 instance_: The address to the UART peripheral selected in the constructor

•	 baudrate

•	 8-bit word length

•	 1 stop bit

•	 Both TX and RX mode

•	 No hardware control

We also set MspInitCallback to nullptr. We make a call to the ST HAL HAL_UART_Init function 

providing it with a pointer to huart_. Please note that for the sake of example simplicity, there 

is no error handling. Error handling is an important step, and return codes from HAL should be 

appropriately handled in code.

Next, we will go through the implementation of the write method shown here:

void hal::uart_stm32::write(std::span<const char> data)

{

    // we must cast away constness due to ST HAL’s API

    char * data_ptr = const_cast<char *>(data.data());

    HAL_UART_Transmit(&huart_,

                     reinterpret_cast<uint8_t *(data_ptr),

                     data.size(),

                     HAL_MAX_DELAY);

}

In the write method, we are making a call to HAL_UART_Transmit from ST HAL, by passing the 

data pointer and data size from the std::span<const char> data parameter. It’s worth noting 

that we need to cast away constness as the C HAL_UART_Transmit function doesn’t accept the 

const pointer to data. This is only safe to do if we are sure that the function we are passing the 

pointer with cast away constness is not trying to modify its content.

Next, we will analyze this approach from the perspective of software design and patterns used.
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The UART interface in the Adapter pattern
The relationship between all the software components in this example (the uart interface, the 

uart_stm32 implementation of the interface, and the ST HAL) can be represented by the following 

UML diagram:

Figure 13.1 – The uart_stm32 class diagram

In Figure 13.1, we see the UML class diagram of the uart_stm32 class. This class effectively im-

plements the Adapter design pattern, which is a structural design pattern used to allow classes 

with incompatible interfaces to work together. The Adapter pattern involves creating an adapter 

class that wraps an existing class (or module) and provides a new interface that the client expects.

In our case, even though stm32f0xx_hal_uart is a C module rather than a C++ class, the uart_

stm32 class serves as an adapter by encapsulating the C-based HAL code and exposing it through 

the C++ uart interface. This adaptation allows other classes or clients in the system, such as a 

GSM library, to interact with the UART hardware using the standardized C++ interface, without 

needing to concern themselves with the underlying C implementation details.
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Let us analyze this approach from the perspective of the uart interface client, such as a GSM library 

that is implemented in the gsm_lib class, with this definition:

class gsm_lib{

    public:

        gsm_lib(hal::uart &u) : uart_(u) {}

        // other methods

    private:

        hal::uart &uart_;

};

In this code, we see an example of a simple client of the uart interface – gsm_lib – with a con-

structor that initializes the reference hal::uart &uart_. This approach is called dependency 

injection. The dependency of the gsm_lib class is constructed externally and supplied to the class 

as a reference through the constructor. Depending on the interface also enables loose coupling, 

which brings the following benefits:

•	 gsm_lib is not interested in the implementation details of the uart interface. It doesn’t 

need to know about baud rate, hardware settings, etc.

•	 gsm_lib is not tied to a particular target. We can reuse it on different platforms by imple-

menting the uart interface on those platforms.

•	 Software testing of gsm_lib is easy as we can mock the uart interface and instantiate the 

gsm_lib object with the mocked object used in tests.

Instead of directly using the C HAL library in the uart_stm32 class, we can wrap the functions 

from the C library in a so-called static class with the direct mapping of all parameters.

Introducing static classes
The static class concept that we will discuss here doesn’t exist in the C++ language standard. 

We are borrowing it from languages such as C#, where it is defined as a class that contains only 

static members and methods. It can’t be instantiated. In C#, a static class is declared using 

the static keyword.

In C++, a static class can be created by defining a class with all static methods and members 

and by deleting the default constructor. Deleting the constructor ensures that no instances of 

the class can be created, enforcing this at compile time. Disabling instantiation signals a clear 

intent to the user: This is a static class. The functions you’re using don’t rely on any instance-specific 

states, as no instances exist. If there’s any internal state, it’s shared and will affect everyone using the class.
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We will modify the previous example and create a uart_c_hal static class to wrap UART C HAL 

functions, as shown in this code:

struct uart_c_hal {

    uart_c_hal() = delete;

    static inline HAL_StatusTypeDef init(UART_HandleTypeDef *huart)

    {

        return HAL_UART_Init(huart);

    }

    static inline HAL_StatusTypeDef transmit(UART_HandleTypeDef *huart,

                                             uint8_t *pData,

                                             uint16_t Size,

                                             uint32_t Timeout)

    {

        return HAL_UART_Transmit(huart, pData, Size, Timeout);

    }

};

In this code, we simply mapped C functions in static methods of the class uart_c_hal. Next, we 

will modify the uart_stm32 class to use uart_c_hal, as shown here:

template <typename HalUart>

class uart_stm32 : public uart

{

  public:

    uart_stm32(USART_TypeDef *inst) : instance_(inst) {}

    void init(std::uint32_t baudrate = c_baudrate_default) override {

      huart_.Instance = instance_;

      huart_.Init.BaudRate = baudrate;

      // ...

      // init huart_ struct

      HalUart::init(&huart_);

    }

    void write(std::span<const char> data) override {

      // we must cast away costness due to ST HAL’s API

      char * data_ptr = const_cast<char *>(data.data());
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      HalUart::transmit(&huart_,

                        reinterpret_cast<uint8_t *(data_ptr),

                        data.size(),

                        HAL_MAX_DELAY);

    }

  private:

    UART_HandleTypeDef huart_;

    USART_TypeDef *instance_;

    std::uint32_t baudrate_;

    static constexpr std::uint32_t c_baudrate_default = 115200;

};

In this code, we see that uart_stm32 is now a template class that uses the methods init and 

transmit from the template parameter HalUart. Now we can use the class template, as shown here:

uart_stm32<uart_c_hal> uart(USART2);

uart.init();

gsm_lib gsm(uart);

The uart_stm32 class template still implements the uart interface, meaning we can still use it 

with the gsm_lib class. Wrapping C HAL functions in a static class and adjusting uart_stm32 to 

use it through a template parameter decouples C HAL from the uart_stm32 implementation. This 

makes it possible to test the uart_stm32 class off-target, as it doesn’t depend on platform-specific 

code anymore.

Static classes are one way of using C libraries in C++ projects. They allow us to encapsulate func-

tions from C libraries in types that can be passed to C++ classes through template arguments, 

making the code more flexible and easier to test.

Next, we will see how to apply the RAII technique to effectively wrap the little fail-safe (littlefs) 

filesystem C library.

Using RAII for wrapping the littlefs C library
RAII is a simple yet powerful C++ technique used to manage resources through an object’s lifetime. 

Resources can represent different things. Resources are acquired when an object’s lifetime begins, 

and they are released when the object’s lifetime ends.
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The technique is used to manage resources such as dynamically allocated memory. To ensure 

that the memory is released and avoid memory leaks, the recommendation is to use dynamic 

allocation only internally in classes. When an object is instantiated, the constructor will allocate 

memory, and when the object goes out of scope, the destructor will release the allocated memory.

The RAII technique can be applied to other resources beyond the dynamically allocated memo-

ry, such as files, and we will apply it to the littlefs filesystem library (https://github.com/

littlefs-project/littlefs). We will start with a short overview of littlefs – a filesystem 

designed for microcontrollers.

LittleFS – a filesystem for microcontrollers
The littlefs filesystem is designed for microcontrollers featuring the following:

•	 Power-loss resilience: It is built to handle unexpected power failures. In the case of power 

loss, it will fall back to the last known good state.

•	 Dynamic wear leveling: It is optimized for flash memory, offering wear leveling across 

dynamic blocks. It also includes mechanisms to detect and bypass bad blocks, ensuring 

reliable performance over time.

•	 Bounded RAM/ROM: It is optimized for low memory usage. RAM consumption remains 

constant, regardless of filesystem size, with no unbounded recursion. Dynamic memory 

is limited to configurable buffers, which can be set up as static.

We will first go through the basic usage of littlefs and then see how we can apply RAII in a C++ 

wrapper class. We will go through an example of using littlefs that will:

•	 Format and mount filesystem.

•	 Create a file, write some content to it, and then close it.

•	 Open a file, read content from it, and then close it.

The full example is contained in Chapter13/lfs_raii/app/src/main.cpp. Let us start with code 

that formats and mounts the filesystem, as shown here:

lfs_t lfs;

const lfs_config * lfs_ramfs_cfg = get_ramfs_lfs_config();

lfs_format(&lfs, lfs_ramfs_cfg);

lfs_mount(&lfs, lfs_ramfs_cfg);

https://github.com/littlefs-project/littlefs
https://github.com/littlefs-project/littlefs
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This code performs the following steps:

•	 It declares a filesystem object named lfs of type lfs_t. This object will be used to interact 

with the littlefs filesystem. It holds the state of the filesystem and is required for all 

subsequent filesystem operations.

•	 The function get_ramfs_lfs_config() returns a pointer to the lfs_config structure 

that contains all the necessary configuration parameters for littlefs to operate on a 

RAM storage medium. This includes function pointers for reading, writing, and erasing, as 

well as parameters like block size, block count, and cache size. In the project setup, we are 

using a portion of RAM as the storage medium. The RAM-based littlefs configuration 

is defined in the C file Chapter13/lfs_raii/app/src/lfs_ramfs.c.

•	 It formats the storage medium to prepare it for use with littlefs. The lfs_format func-

tion initializes the filesystem structures on the storage medium. This process erases any 

existing data and sets up the necessary metadata structures. Formatting is typically done 

once before the first use of the filesystem or when resetting it.

•	 It mounts the filesystem to make it ready for file operations. The lfs_mount function 

initializes the filesystem state in RAM based on the existing structures on the storage me-

dium. This step is necessary before performing any file operations like reading or writing.

Next, let us go over creating a file and writing some data to it. The code is shown here:

lfs_file_t file;

if(lfs_file_open(&lfs, &file, “song.txt”, LFS_O_WRONLY | LFS_O_CREAT) >= 0)

{

    const char * file_content = “These are some lyrics!”;

    lfs_file_write(&lfs,

                   &file,

                   reinterpret_cast<const void *>(file_content),

                   strlen(file_content));

    lfs_file_close(&lfs, &file);

}

This code performs the following steps:

•	 Declares a file object named file of type lfs_file_t. This object represents a file within 

the littlefs filesystem. It holds the state of the file and is required for performing file 

operations like reading and writing.
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•	 Attempts to open a file named “song.txt” for writing using the function lfs_file_open. 

The function is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object, initialized and mounted earlier.

•	 &file: A pointer to the file object that will be associated with the opened file.

•	 “song.txt”: The name of the file to open.

•	 LFS_O_WRONLY | LFS_O_CREAT: Flags specifying to open the file in write-only 

mode, and to create a file if it doesn’t exist already.

•	 If the lfs_file_open function returns a non-negative value, the code attempts 

to write some data to it using the lfs_file_write function.

•	 We declare the content to write as a file_content string literal.

•	 The function lfs_file_write is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object.

•	 &file: A pointer to the file object associated with the opened file.

•	 reinterpret_cast<const void *>(file_content): Casts the character string 

to a const void* pointer as required by the function.

•	 strlen(file_content): The number of bytes to write, calculated based on the 

length of the string.

•	 Closes the file after writing to ensure data integrity. lfs_file_close flushes any pending 

writes to the storage medium and releases resources associated with the file.

After writing data to a file, we will attempt to open the same file in read mode and read the data 

from it. The code for reading a file is shown here:

if(lfs_file_open(&lfs, &file, “song.txt”, LFS_O_RDONLY)>= 0) {

    std::array<char, 64> buff = {0};

    lfs_file_read(&lfs,

                  &file,

                  reinterpret_cast<void *>(buff.data()),

                  buff.size() - 1);

    printf(“This is content from the file\r\n%s\r\n”, buff.data());

    lfs_file_close(&lfs, &file);

}
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This code performs the following steps:

•	 Attempts to open the file “song.txt” for read-only access using the function lfs_file_

open and providing it with the flag LFS_O_RDONLY.

•	 If the lfs_file_open function returns a non-negative value, the code attempts to read 

data from the opened file.

•	 std::array<char, 64> buff = {0} declares an array named buff with a fixed size of 

64 characters and initializes all elements to zero (‘\0’), ensuring the buffer is null-ter-

minated if treated as a C string.

•	 Reads data from opened files in the buff array using the function lfs_file_read. The 

function is provided with the following arguments:

•	 &lfs: A pointer to the filesystem object.

•	 &file: A pointer to the file object associated with the opened file.

•	 reinterpret_cast<const void *>(buff.data()): Casts the buff underlying 

data array pointer to a const void* pointer as required by the function.

•	 buff.size() – 1: The number of bytes to read from the file. Subtracting 1 reserves space 

for a null terminator (‘\0’) at the end of the string.

•	 Closes the file after reading to ensure data integrity.

You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the 

running container, open the Chapter13/lfs_raii project, as described in Chapter 4, and run the 

following commands in the Visual Studio Code terminal, or run them directly in the container 

terminal:

$ cd Chapter13/lfs_raii

$ cmake -B build

$ cmake --build build --target run_in_renode

Introducing an RAII-based C++ wrapper
Now, we will wrap the littlefs functionality in a simple C++ wrapper applying the RAII tech-

nique. We will create an fs namespace with types lfs and file in it. Let us start with the lfs 

struct code shown here:

namespace fs{

struct lfs {
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    lfs() = delete;

    static inline lfs_t fs_lfs;

    static void init() {

        const lfs_config * lfs_ramfs_cfg = get_ramfs_lfs_config();

        lfs_format(&fs_lfs, lfs_ramfs_cfg);

        lfs_mount(&fs_lfs, lfs_ramfs_cfg);

    }   

};

};

The purpose of the struct lfs is to:

•	 Hold an instance of a filesystem object named fs_lfs of type lfs_t used to interact with 

the littlefs filesystem.

•	 Implement the static method init used to initialize the filesystem by calling the lfs_

format and lfs_mount functions. The init method must be called before any file oper-

ations are performed.

Next, let’s go over the file class definition:

namespace fs{

class file {

public:

    file(const char * filename, int flags = LFS_O_RDONLY);

    ~file();

    [[nodiscard]] bool is_open() const;

    int read(std::span<char> buff);

    void write(std::span<const char> buff);

private:

    bool is_open_ = false;

    lfs_file_t file_;

};

};
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This code shows methods and data members of the class file. Next, we will go through them, 

starting with the constructor shown here:

file(const char * filename, int flags = LFS_O_RDONLY) {

    if(lfs_file_open(&lfs::fs_lfs, &file_, filename, flags) >= 0) {

        is_open_ = true;

    }

}

The file constructor shown opens a file with the specified filename and flags. It sets is_open_ 

to true if the file opens successfully. Next, let’s go over the destructor shown here:

~file() {

if(is_open_) {

        printf(“Closing file in destructor.\r\n”);

        lfs_file_close(&lfs::fs_lfs, &file_);

    }

}

The destructor shown will close the file if it’s already opened. It calls lfs_file_close to close the 

file and release resources. The constructor and destructor implement the RAII technique – creating 

an object will acquire resources, and when the object’s lifetime ends, the destructor will release 

them. Next, let’s go over the read and write methods:

int read(std::span<char> buff) {

return lfs_file_read(&lfs::fs_lfs,

                     &file_,

                     reinterpret_cast<void *>(buff.data()),

                     buff.size() - 1);

}

int write(std::span<const char> buff) {

return lfs_file_write(&lfs::fs_lfs,

                      &file_,

                      reinterpret_cast<const void *>(buff.data()),

                      buff.size());

}
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The read and write methods are simple wrappers for the lfs_file_read and lfs_file_write 

functions. Both read and write use std::span as function parameters for increased type safety 

and better flexibility, as we can simply provide it with std::array.

Cleaner file management with RAII
Now, we will see how we can use the fs and file wrappers to work with the littlefs filesystem. 

The code is shown here:

fs::lfs::init();

{

    fs::file song_file(“song.txt”, LFS_O_WRONLY | LFS_O_CREAT);

    if(song_file.is_open()) {

    song_file.write(“These are some lyrics!”);

    // destructor is called on song_file object

    // ensuring the file is closed

}

We first initialize the filesystem by calling fs::lfs::init(). Next, we introduce local scope to 

demonstrate a call to destructor and perform the next steps:

•	 Open “song.txt” for writing (creating it if it doesn’t exist).

•	 Write a string literal in the file if it was opened successfully.

•	 Upon exit from the scope, the destructor is called, ensuring the file is closed.

Next, we will open the file and read data from it. The code is shown here:

fs::file song_file(“song.txt”);

std::array<char, 64> buff = {0};

if(song_file.is_open()) {

    song_file.read(buff);

    printf(“This is content from the file\r\n%s\r\n”,

    buff.data());

}

This code performs the next steps:

•	 Opens “song.txt” for reading (default mode).

•	 Declares std::array<char, 64> buff, initialized to zeros.

•	 Reads the data from the file in buff if the file is opened successfully.
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You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the 

running container, open the Chapter13/lfs_raii project, as described in Chapter 4, and run the 

following commands in the Visual Studio Code terminal, or run them directly in the container 

terminal:

$ cd Chapter13/lfs_raii

$ cmake -B build -DMAIN_CPP_FILE_NAME=main_lfs_raii.cpp

$ cmake --build build --target run_in_renode

The simple C++ wrapper we wrote for the littlefs library applies RAII principles, ensuring proper 

handling of resources as the destructor is called when an object’s lifetime ends. This ensures the 

file is closed even when there are multiple return paths from a code. It also simplifies the devel-

opment experience as the code is less verbose and cleaner. The usage of std:span increases safety.

Summary
In this chapter, we covered several techniques for using C libraries in C++ projects. By wrapping 

C code in C++ classes, we can organize our code better in loosely coupled software modules. C++ 

increases type safety and compile-time features allow us to easily organize C wrappers in static 

classes.

Applying RAII is simple and provides us with a powerful mechanism that takes care of resource 

management, as we saw in the example of the littlefs filesystem.

In the next chapter, we will go over super-loop in bare metal firmware and see how we can en-

hance it with mechanisms such as sequencer in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems




14
Enhancing Super-Loop with 
Sequencer

Super-loop is the basic software architecture of bare-metal firmware. It is an infinite loop that 

executes tasks (functions) often conditioned by flags set in an Interrupt Service Routine (ISR). 

As the complexity of business logic increases, so does the size of a super loop, which can quickly 

turn into a spaghetti mess. To solve this problem within bare-metal constraints (no operating 

system), we can use a sequencer.

A sequencer stores and executes tasks (functions) in an organized fashion. Instead of setting a 

flag in an ISR, checking it in a super loop, and executing a function if a flag is set, we simply add 

a task to a sequencer from the ISR. The super loop then runs the sequencer, which executes the 

added tasks. Tasks in the sequencer can be prioritized, so the sequencer will execute higher-pri-

ority tasks first.

In this chapter, we’re going to cover sequencer design and implementation through the following 

main topics:

•	 Super-loop and motivation for a sequencer

•	 Designing a sequencer

•	 Storing a callable

•	 Implementing a sequencer
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Technical requirements
The examples from this chapter are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter14). To get the most out of this chapter, run the 

examples in the Renode simulator.

Super-loop and motivation for a sequencer
Before we get into the design and implementation of a sequencer, we will first analyze the lim-

itations of a super loop. In a usual super-loop scenario, we check flags that are set from an ISR. 

Below is an example pseudocode of a super loop:

bool data_read_ready = false;

bool data_send_timeout = false;

int main() {

    // initialize hardware

   

    while(1) {

        if(data_read_ready) {

            sensor_data_read_and_buffer();

            data_read_ready = false;

        }

        if(data_send_timeout) {

            data_send_from_buffer();

            data_send_timeout = false;

        }

        if(!data_read_ready && !data_send_timeout) {

            enter_sleep();

        }

    }

}

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter14
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter14
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In the preceding pseudocode, we perform the following steps:

1.	 Check the Boolean flag data_read_ready and, if it is set, we execute the function sensor_

data_read_and_buffer. We then reset the data_read_ready flag.

2.	 Check the Boolean flag data_send_timeout and, if it is set, we execute the function data_

send_from_buffer. We then reset the data_send_timeout flag.

3.	 Both the data_read_ready and data_send_timeout flags are set from an ISR. In our ex-

ample, this might be the timer’s ISR.

4.	 Finally, we check if both flags are false, and if they are, we enter sleep mode.

The example we discussed is simple, but as the number of flags grows, so does the size of the super 

loop, the number of global variables (flags), and the possibility of a mistake such as resetting a 

flag or forgetting to include it in the if statement, which provides the conditions for entering 

sleep mode.

Now, imagine we wanted to prioritize functions executed in the super loop. Using the current 

approach would be difficult. Adding a priority variable and checking it in if statements might 

work initially, but the code would quickly become messy and difficult to maintain.

To address issues of a super loop in a bare-metal environment, we will utilize a sequencer. Instead 

of defining global flags and setting them from an ISR, we will add tasks to the sequencer from an 

ISR. Each task will include priority information, enabling the sequencer to organize them in an 

internal queue based on their priority.

In the main loop, the sequencer runs repeatedly. It handles tasks by always picking the highest-pri-

ority one from the queue and executing it first, keeping task management efficient and orderly.

Next, we will proceed with the design of the sequencer.



Enhancing Super-Loop with Sequencer280

Designing a sequencer
We will base the sequencer design on a command pattern that we covered in Chapter 10. In the 

command pattern, a sequencer will take the role of invoker. In our design, we’ll use the term task 

instead of command. This task is equivalent to a function – it represents a specific unit of func-

tionality – not a task as defined in operating systems.

Figure 14.1 – Sequencer design – UML diagram
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Figure 14.1 depicts a UML diagram of a sequencer. We can see it takes the role of a sequencer in the 

command pattern, as described earlier. Instead of a command interface and concrete command, 

this UML design uses a std::function class template (we used the same approach in the GPIO 

Interrupt manager example of Chapter 10).

The sequencer class holds an array of tasks, which are used to store callable objects. The sequencer 

provides a simple interface, with just two methods:

•	 void add(task t): The method used to add a task to the sequencer

•	 void run(): The method used to take a task with the highest priority, execute it, and 

remove it from the sequencer

Before we go into the implementation of sequencer methods, we will first go over the task class 

and alternatives to std::array for storing tasks. The task class represents a unit of functionality 

that will be executed by a sequencer according to priority. It has the following members:

•	 std::function<void()> the_task_: An actual callable that will be executed

•	 std::uint8_t priority_: Priority according to which tasks will be sorted in the se-

quencer’s storage

Below is the code that implements the task class:

template<typename CallableHolder>

class task {

public:

    constexpr static std::uint8_t c_prio_default = 250;

    constexpr static std::uint8_t c_prio_max = 255;

    constexpr static std::uint8_t c_prio_min = 0;

    task(CallableHolder the_task, std::uint8_t prio = c_prio_default) :

        the_task_(the_task), priority_(prio) {}

    void execute() {

        if(the_task_) {

            the_task_();

        }

    }

    bool operator<(const task &rhs) const

    {
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        return priority_ < rhs.priority_;

    }

private:

    CallableHolder the_task_;

    std::uint8_t priority_ = c_prio_default;

};

This code implements the task as a class template, allowing us to use it with different callable 

holders. The one we introduced in the book previously is std::function. The class template task 

has the following members:

•	 A constructor that initializes the the_task_ member, which is type CallableHolder

•	 The void execute() method, which calls operator() on the_task_

•	 operator<, which compares task by priority

This code demonstrates the usage of the class template task:

    using callable_holder = std::function<void()>;

    auto fun_a = []() {

        printf("High priority task!\r\n");

    };

    task<callable_holder> task_a(fun_a, 255);

    auto fun_b = []() {

        printf("Low priority task!\r\n");

    };

    task<callable_holder> task_b(fun_b, 20);

    if(task_a < task_b) {

        task_b.execute();

    }

    else {

        task_a.execute();

    }
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In this example, we instantiate the class template task with std::function<void()>. We create 

two objects, task_a and task_b, and then execute one with higher priority by using operator< 

to compare them. Task objects in this example are initialized with lambdas, which are internally 

stored in std::function<void()>. If you run the preceding example, you will see the following 

output:

High priority task!

As you can see, the task with higher priority was executed thanks to the overloaded operator<.

In Chapter 10, we saw that the class template std::function can resort to dynamic memory 

allocation to store lambdas that are captured. To mitigate this concern, we will introduce the 

Embedded Template Library (ETL), a library that defines a set of containers and algorithms 

whose operations are deterministic and don’t use dynamic memory allocation. The ETL will be 

discussed more in Chapter 17.

Storing a callable
Instead of std::function, we can use etl::delegate – a callable holder from the ETL. One of its 

limitations is it doesn’t work with capturing lambdas. This may affect the code expressiveness, 

but it provides us with equivalent functionality that allows us to capture different callables. This 

code demonstrates using the class template task with etl::delegate:

    using callable_etl = etl::delegate<void()>;

    using task_etl = task<callable_etl>;

    class test {

    public:

        test(int x) : x_(x) {}

        void print() const {

            printf("This is a test, x = %d.\r\n", x_);

        }

        void static print_static() {

            printf("This is a static method in test.\r\n");

        }

    private:

        int x_ = 0;
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    };

    test test_1(42);

    task_etl task_member_fun(callable_etl::create<test, &test::print>

                                                        (test_1));

    task_member_fun.execute();

    task_etl task_static_fun(callable_etl::create<test::print_static>());

    task_static_fun.execute();

    task_etl task_lambda([](){

        printf("This is non capturing lambda!\r\n");

    });

    task_lambda.execute();

This code demonstrates how we can use etl::delegate to store a callable:

•	 callable_etl::create<test, &test::print>(test_1) creates etl::delegate using 

the template method create instantiated with the class test and its member print

•	 callable_etl::create<test::print_static>() creates etl::delegate using the tem-

plate method create instantiated with the static method print_static

•	 task_lambda([](){ printf("This is non capturing lambda!\r\n");}); initializes 

etl::delegate with the provided non-capturing lambda

Running the preceding example will result in the following output:

This is a test, x = 42.

This is a static method in test.

This is non capturing lambda!

You can run the full example in the Renode simulator. Start Visual Studio Code, attach it to the 

running container, open the Chapter14/sequencer project, as described in Chapter 4, and run 

the following commands in the Visual Studio Code terminal, or run them directly in the container 

terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

cmake --build build --target run_in_renode



Chapter 14 285

We have alternative implementations for callable storage – std::function from the standard 

library, or the more embedded-friendly etl::delegate from ETL. Next, let us consider options 

for a container for storing the tasks inside the sequencer.

In the UML diagram in Figure 14.1, the sequencer is using std::array to store tasks. This implies 

that sorting the elements of an array according to the priority is handled by the sequencer itself. 

Instead of implementing this manually, we can use std::priority_queue – a container adapter 

from the standard library.

std::priority_queue is a template class that is used as an adapter for another container, which 

provides a random access iterator and the following methods:

•	 front()

•	 push_back()

•	 pop_back()

We could use std::vector from the standard library, as it meets all the requirements imposed 

by std::priority_queue. As you know, std::vector uses dynamic memory allocation, which 

doesn’t make it a good fit for most of the embedded applications.

ETL provides a fixed-size implementation of a vector with a similar interface as standard library 

implementation. This makes it compatible with the priority queue. This code demonstrates using 

etl::vector with std::priority_queue:

    std::priority_queue<int, etl::vector<int, 6>> pq{};

    pq.push(12);

    pq.push(6);

    pq.push(16);

    pq.push(8);

    pq.push(1);

    pq.push(10);

    printf("priority queue elements:\r\n");

    while(!pq.empty()) {

        printf("top element: %d, size: %d\r\n", pq.top(), pq.size());

        pq.pop();

    }
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This code performs the following steps:

1.	 std::priority_queue<int, etl::vector<int, 6>> pq{} defines a priority queue, pq, 

with the underlying container etl::vector<int, 6>, which is a fixed size vector of size 6.

2.	 pq.push(12) inserts an element (12) in the priority queue, pq, and sorts the queue.

3.	 Using the push method, we add 5 more elements in the queue – 6, 16, 8, 1, and 10.

4.	 With while(!pq.empty()), we run a while loop until the priority queue is empty.

5.	 Inside the while loop, we print the top element, which we access using the top() method, 

and size using the size() method. Then, we pop the top element from the queue using 

pop().

Running the preceding code will result in the following output:

priority queue elements:

top element: 16, size: 6

top element: 12, size: 5

top element: 10, size: 4

top element: 8, size: 3

top element: 6, size: 2

top element: 1, size: 1

As you can see from the output, the elements in the priority queue are sorted. This makes it a 

good solution for storing tasks that can be sorted thanks to the overloaded operator<. You can 

run the full example in the Renode simulator. Start Visual Studio Code, attach it to the running 

container, open the Chapter14/sequencer project, as described in Chapter 4, and run the following 

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

-DMAIN_CPP_FILE_NAME=main_pq.cpp

cmake --build build --target run_in_renode

Now that we have all the elements we need for the sequencer, we will proceed with the imple-

mentation.
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Implementing a sequencer
In this chapter, we introduced etl::delegate – an alternative to std::function and fixed size 

vector implementation from ETL. As ETL avoids dynamic memory allocation, we will use these 

components for the implementation of the sequencer. Below is an updated UML diagram:

Figure 14.2 – UML sequencer diagram using ETL components

Figure 14.2 depicts a UML diagram of the sequencer using delegate and vector ETL components 

and the priority queue from the standard library. This code implements sequencer:

template<typename Task, std::size_t Size>

struct sequencer {
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    sequencer() = delete;

    static void add(Task task) {

        if(pq.size() < Size) {

            __disable_irq();

            pq.push(task);

            __enable_irq();

        }

    }

    static void run() {

        if(!pq.empty()) {

            __disable_irq();

            auto task = pq.top();

            pq.pop();

            __enable_irq();

            task.execute();

        }

    }

private:

    static inline std::priority_queue<Task, etl::vector<Task, Size>> pq{};

};

In this code, sequencer is implemented as a static template class with Task and Size as template 

parameters. This allows us to use it with either std::function or etl::function-based tasks 

and to define the size of the ETL vector. sequencer has the following members:

•	 static inline std::priority_queue<Task, etl::vector<Task, Size>> pq{}: A 

private static priority queue based on an ETL vector.

•	 static void add(Task task): A static method used to add tasks to the queue using the 

push method, guarded by disabling and enabling interrupts, as it can be called from an ISR. 

•	 static void run(): A static method used to take the top element from the queue and 

execute it. Access to the queue is guarded by disabling and enabling interrupts.
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Below is an example of using the sequencer:

    using callable_etl = etl::delegate<void()>;

    using task_etl = task<callable_etl>;

    class test {

    public:

        test(int x) : x_(x) {}

        void print() const {

            printf("This is a test, x = %d.\r\n", x_);

        }

        void static print_static() {

            printf("This is a static method in test.\r\n");

        }

    private:

        int x_ = 0;

    };

    test test_1(42);

    task_etl task_member_fun(callable_etl::create<test, &test::print>

                                                        (test_1), 20);

    task_etl task_static_fun(callable_etl::create<test::print_static>(), 30);

    task_etl task_lambda([](){

        printf("This is non capturing lambda!\r\n");

    }, 10);

    using seq = sequencer<task_etl, 16>;

    seq::add(task_member_fun);

    seq::add(task_static_fun);

    seq::add(task_lambda);

    while(true)

    {

        seq::run();

    }
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In this code, we do the following:

•	 Instantiate the etl::delegate-based tasks task_member_fun, task_static_fun, and 

task_lambda.

•	 We add tasks to the sequencer using the sequencer add method.

•	 We run the sequencer in the main while loop using the method run().

Running the preceding code will result in the following output:

This is a static method in test.

This is a test, x = 42.

This is non capturing lambda!

As we can see in this code, the tasks are executed according to the assigned priority. You can run 

the full example in Renode. Start Visual Studio Code, attach it to the running container, open the 

Chapter14/sequencer project, as described in Chapter 4, and run the following commands in the 

Visual Studio Code terminal, or run them directly in the container terminal:

cmake -B build -DCMAKE_BUILD_TYPE=MinSizeRel

-DMAIN_CPP_FILE_NAME=main_seq.cpp

cmake --build build --target run_in_renode

Running the example in the simulator should provide the same console output. I invite you to 

explore the sequencer by adding tasks from the timer or external interrupts.

A sequencer offers a better alternative to a super loop by organizing tasks in a strictly sequential, 

prioritized manner. Deterministic behavior needs to be assured through task implementation. 

For instance, in the case of real-time requirements, each task must include internal monitoring 

to guarantee it meets the necessary real-time constraints.

Summary
In this chapter, we examined the common problems with a basic super loop, which motivated 

our move toward a sequencer design. We covered sequencer design in detail and introduced ETL 

components etl::delegate – callable holder which is an alternative to std::function – and a 

fixed size vector, which are both great fits for embedded applications as they don’t use dynamic 

memory allocation.

In the next chapter, we will learn about the observer pattern and apply it to a temperature-read-

ing application.
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Practical Patterns – Building a 
Temperature Publisher

Design patterns are tools for solving common problems. So far, we have covered a few design 

patterns in this book, such as the Command and Adapter patterns. In this chapter, we will go 

over the Observer pattern and apply it to a common problem in embedded systems – handling 

temperature readings in different parts of the system.

We will start by looking at the Observer pattern and how it can be implemented at runtime. This 

pattern is particularly useful when multiple components need to react to changes in data from 

a central source. Imagine a temperature sensor in an embedded device that reports changes to 

multiple listeners. This could be part of a smart thermostat, an industrial machine monitor, or 

an HVAC control board – each with components such as a screen, a logger, or a fan controller that 

react to temperature updates.

Next, we will transition to a compile-time implementation of the same pattern using modern C++ 

techniques such as variadic templates and fold expressions. By leveraging these techniques, we 

can generate highly optimized code at compile time, avoiding virtual dispatch, associated with 

runtime polymorphism. This approach results in a smaller memory footprint and faster code 

that’s better suited to systems with limited resources.



Practical Patterns – Building a Temperature Publisher292

In this chapter, we’re going to cover the following main topics:

•	 The Observer pattern

•	 Runtime implementation

•	 Compile-time implementation

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Add an execution pane with GCC as your com-

piler for x86 architecture. This will allow you to see standard output and better observe the code’s 

behavior. As we are using a lot of modern C++ features, make sure to select C++23 standard, by 

adding -std=c++23 in the compiler options box, and set the optimization level to -O3. Also, add 

a compiler pane using ARM gcc 11.2.1 (none) to inspect the assembly output of the examples.

You can try the examples from this chapter in the Renode simulator in the Docker container you 

set up in Chapter 4. Make sure that the Docker container is running.

You can find the files for this chapter on GitHub at https://github.com/PacktPublishing/Cpp-

in-Embedded-Systems/tree/main/Chapter15/observer.

The Observer pattern
The Observer pattern is often used in event-driven systems to publish events to subscribed 

objects, usually by calling a method on them. An object that publishes events is called a subject 

or publisher. Objects that receive events from a publisher are called observers or subscribers. 

From now on, we will use the terms publisher and subscriber.

A publisher has an internal list of subscribers and provides an interface to register and unregister 

a subscriber from the internal list. It also provides the notify method, used by its client, which 

in turn calls update methods on subscribers – that’s why we say that the publisher notifies sub-

scribers.

An example of a publisher-subscriber mechanism that is common in embedded systems would be 

a temperature publisher, which notifies the logger, display, and data sender at regular intervals. 

Before we go on to the implementation of this example, we will first go through a UML diagram 

of the Observer pattern.

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter15/observer
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter15/observer
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Figure 15.1 – UML diagram of the Observer pattern

Figure 15.1 depicts the UML class diagram of the Observer pattern. In the diagram, we see that the 

publisher class has the following members:

•	 etl::vector<subscribers_, 8>: Internal list of pointers to the subscriber interface, for 

which we will use vector from ETL.

•	 register_sub(subscriber *): The method used to register a subscriber. The register 

keyword is reserved in C++ and used as a storage specifier, so we are using register_sub 

as the name for this method.

•	 unregister(subscriber *): The method used to unregister a subscriber.

•	 notify(float): The method used by the publisher’s client to trigger the updating of 

subscribers.
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The subscriber interface class has one pure virtual method – void update(float). This method 

is overridden in the concrete implementation of the subscriber class. To see this in action, we 

will proceed with the runtime implementation of the Observer pattern.

Runtime implementation
We will go through the runtime implementation of the Observer pattern on the example of tem-

perature publisher. Subscribers will be a logger, display, and data sender. The code of the subscriber 

interface and concrete subscribers is shown here:

#include <cstdio>

#include “etl/vector.h”

#include <algorithm>

class subscriber {

public:

    virtual void update(float) = 0;

    virtual ~subscriber() = default;

};

class display : public subscriber {

public:

    void update(float temp) override {

        printf(“Displaying temperature %.2f \r\n”, temp);

    }

};

class data_sender : public subscriber {

public:

    void update(float temp) override {

        printf(“Sending temperature %.2f \r\n”, temp);

    }

};

class logger : public subscriber {

public:

    void update(float temp) override {

        printf(“Logging temperature %.2f \r\n”, temp);
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    }

};

The preceding code defines the subscriber interface and concrete subscriber classes: display, 

data_sender, and logger. Concrete classes override the pure virtual update method from the in-

terface class. For the sake of simplicity of the example, all concrete implementations are printing 

temperature to standard output.

Using the interface class allows the publisher to depend on the interface. The publisher main-

tains an internal container of pointers to the subscriber interface. This makes it possible to add 

different implementations of the subscriber interface through the pointer on the base interface 

class. The code for the publisher class is provided here:

class publisher {

public:

    void register_sub(subscriber * sub) {

        if(std::find(subs_.begin(), subs_.end(), sub) == subs_.end())

        {

            subs_.push_back(sub);

        }

    }

    void unregister(subscriber * sub) {

        if(auto it = std::find(subs_.begin(), subs_.end(),

                                  sub); it != subs_.end())

        {

            subs_.erase(it);

        }

    }

    void notify(float value) {

        for(auto sub: subs_) {

            sub->update(value);

        }

    }

private:

    etl::vector<subscriber*, 8> subs_;

};
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In the preceding publisher class, we see the following members:

•	 etl::vector<subscriber*, 8> subs_: A private container used to maintain subscribers. 

If you are running this example in Compiler Explorer, make sure to add the ETL library 

using the Libraries option.

•	 void register_sub(subscriber * sub): A method used to register the subscriber. It 

uses the std::find algorithm to check if a subscriber has already been added.

•	 void unregister(subscriber * sub): A method used to unregister a subscriber. It 

uses the std::find algorithm to check if a subscriber is added before the calling method 

erase to remove it from a vector. The method erase is provided by the iterator returned 

by std::find if it is different from subs_.end().

•	 void notify(float value): Loops through registered subscribers and calls the method 

update on them.

Now, let us see how to use the preceding publisher and subscribers in the following code:

int main() {   

    logger temp_logger;

    display temp_display;

    data_sender temp_data_sender;

    publisher temp_publisher;

    temp_publisher.register_sub(&temp_logger);

    temp_publisher.register_sub(&temp_display);

    temp_publisher.notify(24.02f);

    temp_publisher.unregister(&temp_logger);

    temp_publisher.register_sub(&temp_data_sender);

    temp_publisher.notify(44.02f);

    return 0;

}

In the code, we perform the following steps:

1.	 Instantiate the following concrete subscribers: temp_logger, temp_display, and temp_

data_sender.

2.	 Instantiate the publisher temp_publisher.

3.	 Register the subscribers temp_logger and temp_display.

4.	 Call notify(24.02f) on temp_publisher.
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After these steps, we expect the following output:

Logging temperature 24.02

Displaying temperature 24.02

Next, we perform the following steps:

1.	 Unregister the subscriber temp_logger.

2.	 Register the subscriber temp_data_sender.

3.	 Call notify(44.02f) on temp_publisher.

After these steps, we expect the following output:

Displaying temperature 44.02

Sending temperature 44.02

As an exercise, create a new subscriber class eeprom_writer that records temperature if it goes 

under or above a set threshold.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following 

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake –B build

$ cmake --build build --target run_in_renode

Next, we will go through the compile-time implementation of the Observer pattern.

Compile-time implementation
In most embedded applications, we know a lot about the system’s behavior at compile time. This 

means that when using the Observer pattern, we already know all the subscribers. If we assume 

that subscribers are only registered once and never unregistered, we can create a compile-time 

version of the Observer pattern.

To enable this, we’ll first break down the key C++17 features that make compile-time implemen-

tation feasible.
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Leveraging variadic templates
We will base the implementation on variadic templates. We will start with a simplified imple-

mentation to explain variadic templates, parameter packs, and fold expressions – C++ features 

that will allow us to create a compile-time version of the Observer pattern. Let us proceed with 

the following code:

#include <cstdio>

struct display {

    static void update(float temp) {

        printf(“Displaying temperature %.2f \r\n”, temp);

    }

};

struct data_sender {

    static void update(float temp) {

        printf(“Sending temperature %.2f \r\n”, temp);

    }

};

struct logger {

    static void update(float temp) {

        printf(“Logging temperature %.2f \r\n”, temp);

    }

};

template <typename... Subs>

struct publisher {

    static void notify(float temp) {

        (Subs::update(temp), ...);

    }

};

int main() {

    using temp_publisher = publisher<display,

    data_sender,
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    logger>;

    temp_publisher::notify(23.47);

    return 0;

}

In the code above, we have subscribers structs display, data_sender, and logger. All structs 

implement the static method update, which takes temperature as a parameter and prints it.

The struct publisher is a variadic class template. A variadic template is a template with at least 

one parameter pack. A template parameter pack is a template parameter that accepts zero or 

more template arguments. typename... Subs is a type template parameter pack named Subs, 

meaning we can instantiate the struct publisher with zero or more different types. To sum it up:

•	 publisher is a variadic class template as it has a template parameter pack typename... 

Subs.

•	 We can instantiate it with a variable number of types provided as template arguments. 

This is the way to register subscribers to the publisher.

In the main function, we create the alias temp_publisher as publisher<display, data_sender, 

logger>. We call the notify method on this alias, which will result in calls to update functions 

in types provided through the template parameter pack, thanks to the fold expression in the 

notify method.

The final piece of the puzzle is the fold expression (Subs::update(temp), ...). This is a fold expres-

sion that uses the comma operator as the folding operator. It expands to: (display::update(temp), 

data_sender::update(temp), logger::update(temp)).

The fold expression ensures that display::update(temp) is called first, then data_

sender::update(temp), then logger::update(temp). The order of evaluation is strictly left to 

right for the operands of the comma operator. Each update(temp) call returns a value (likely void).

The comma operator discards all return values except the last one, so only the final 

logger::update(temp) determines the fold’s result. If they all return void, the whole expression 

also returns void.

Fold expressions were introduced in C++17 and using the comma operator is a concise way to 

call a function on each type in the parameter pack. Before that, a recursion was needed to iterate 

through types and call a function on them.



Practical Patterns – Building a Temperature Publisher300

When examining the disassembly output in Compiler Explorer, you’ll notice that the generated 

assembly code is relatively brief, approximately 30 lines in total, as shown here:

.LC0:

        .ascii  “Displaying temperature %.2f \015\012\000”

.LC1:

        .ascii  “Sending temperature %.2f \015\012\000”

.LC2:

        .ascii  “Logging temperature %.2f \015\012\000”

main:

        push    {r4, r5, r6, lr}

        mov     r4, #-536870912

        ldr     r5, .L3

        mov     r2, r4

        mov     r3, r5

        ldr     r0, .L3+4

        bl      printf

        mov     r2, r4

        mov     r3, r5

        ldr     r0, .L3+8

        bl      printf

        mov     r2, r4

        mov     r3, r5

        ldr     r0, .L3+12

        bl      printf

        mov     r0, #0

        pop     {r4, r5, r6, lr}

        bx      lr

.L3:

        .word   1077377105

        .word   .LC0

        .word   .LC1

        .word   .LC2

In this assembly code, we can see that there are no calls to the static update methods from the 

display, data_sender, and logger structs. This means the compiler was able to optimize these 

calls out, along with the registration of subscribers and the call to the publisher’s notify method, 

resulting in direct calls to the printf function. 



Chapter 15 301

The result is a small memory footprint and fast performance. This example demonstrates the 

zero-cost abstraction design principle: we have abstractions for the publisher and subscribers, 

yet there is zero overhead, as the compiler is able to optimize the code to be as efficient as if it 

were written by hand.

Compare the assembly output of the compile-time implementation with that of the runtime 

implementation using the same optimization level (-O3). It is clear that the compile-time imple-

mentation uses less memory and is faster as the compiler optimized away most of the function 

calls, and there is no indirection caused by virtual functions.

As we analyze the assembly code, let’s take the opportunity to better understand fold expressions. 

To prevent GCC from optimizing away calls to the update methods, we can use the __attribute__

((noinline)) function attribute, e.g. static void __attribute__((noinline)) update(float 

temp). Add this attribute to the static update method of the display, data_sender, and logger 

structs, and observe the generated assembly code. You’ll see how the call to the notify method in 

the main function results in parameter pack expansion and generates calls to the update methods 

of the display, data_sender, and logger structs.

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following 

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build

-DMAIN_CPP_FILE_NAME=main_observer_ct_basic.cpp

$ cmake --build build --target run_in_renode

Simplified compile-time implementation of the Observer pattern has a couple of limits:

•	 Subscribers can only be registered.

•	 All subscribers are registered when the publisher is instantiated. They cannot be registered 

after the publisher is instantiated.

Next, we will tackle the last point, as registering all subscribers in a single line of code may be cum-

bersome and not always practical. This will provide us with a more flexible compile-time design.
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Improving the compile-time implementation
We will not change the interface of the publisher template struct. Instead, we will allow it to 

receive other publishers as arguments. The code is below:

template<typename T>

concept Updatable = requires (T, float f) {

    { T::update(f) } -> std::same_as<void>;

};

template<typename T>

concept Notifiable = requires (T, float f) {

    { T::notify(f) } -> std::same_as<void>;

};

template <typename... Subs>

struct publisher {

    static void notify(float temp) {

        (call_update_or_notify<Subs>(temp), ...);

    }

private:

    template<typename T>

    static void call_update_or_notify(float temp) {

        if constexpr (Updatable<T>) {

            T::update(temp);

        } else if constexpr (Notifiable<T>) {

            T::notify(temp);

        }

        else {

            static_assert(false, “Type is not Updatable or Notifiable”);

        }

    }

};

In the code above, we defined the following concepts:

•	 Updatable: This describes a type that has a static method update that accepts a float

•	 Notifiable: This describes a type that has a static method notify that accepts a float
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We covered concepts in more detail in Chapter 8. The variadic template class publisher has a new 

method – call_update_or_notify. It is called on every type in the parameter pack typename... 

Subs in the method notify using the fold expression and the comma operator.

In the method call_update_or_notify, we use if constexpr to check, at compile-time, if the 

type is Updatable or Notifiable and call the update or notify static method on it respectively.

Below is an example of using the new version of the Observer pattern:

    using temp_publisher = publisher<display, data_sender>;

    temp_publisher::notify(23.47);

    using temp_publisher_new = publisher<temp_publisher, logger>;

    temp_publisher_new::notify(42.42);

In the code above, we instantiate temp_publisher by providing the variadic class template 

publisher with types display and data_sender, which are both subscribers are Updatable.

Next, we instantiate temp_publisher_new by providing publisher with the previously instan-

tiated temp_publisher and the subscriber logger. Below is the output of the above example:

Displaying temperature 23.47

Sending temperature 23.47

Displaying temperature 42.42

Sending temperature 42.42

Logging temperature 42.42

You can run the full example in Renode. Start Visual Studio Code, attach it to the running con-

tainer, open the Chapter15/observer project as described in Chapter 4, and run the following 

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake -B build -DMAIN_CPP_FILE_NAME=main_observer_ct.cpp

$ cmake --build build --target run_in_renode

This implementation of the Observer pattern allows us to register subscribers in a more flexible 

manner. To make it more generic, as an exercise, you can modify it so that the notify method is 

able to take a variable number of arguments.
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Summary
In this chapter, we went through the Observer pattern, both runtime and compile-time imple-

mentations.

Compile-time implementation is utilizing what we know about the application during com-

pile-time. It is based on variadic template classes and fold expressions. The result is super compact 

and fast code, as we are not storing information about subscribers in a container, nor do we need 

to iterate through the container to make a call to update methods.

In the next chapter, we will cover  Finite State Machines (FSM) and the implementation of the 

State patterns in C++.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/embeddedsystems

https://packt.link/embeddedsystems
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Designing Scalable Finite State 
Machines

A Finite State Machine (FSM) is an abstract computational module used to represent a system 

that can be in exactly one of a finite number of states at any given time. An FSM can transition 

from one state to another on a given input, and it can perform an action during the transition.

In control theory, there is a classification of Moore and Mealy machines. Moore’s FSM output 

depends only on a state, that is, the FSM uses only entry actions. Mealy’s FSM output depends 

on the input and current state, that is, the action it performs is determined by both the current 

state and the input.

The FSMs that we will cover in this chapter are a combination of both Moore and Mealy FSMs as 

they support both actions performed during transitions and entry and exit actions that depend 

only on a current state. FSMs are also called Unified Modeling Language (UML) state machines 

and are used in real-life applications in embedded systems to describe and control machines.  

For example, FSMs are commonly used to control washing machines, elevator systems, or  

communication protocols in networking devices, for managing complex sequences of  

operations based on various inputs. Understanding FSMs will help you design more predictable 

and maintainable embedded systems.
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In this chapter, we’re going to cover the following main topics:

•	 FSM – a simple implementation

•	 FSM – implementation using the State pattern

•	 State pattern implementation using tag dispatching

•	 Boost SML (State Machine Language)

Technical requirements
To get the most out of this chapter, I strongly recommend using Compiler Explorer (https://

godbolt.org/) as you read through the examples. Select GCC as your compiler and target x86 

architecture. This will allow you to see standard output (stdio) results and better observe the 

code’s behavior. As we are using a lot of modern C++ features, make sure to select the C++23 

standard, by adding -std=c++23 in the compiler options box.

Compiler Explorer makes it easy to try out the code, tweak it, and immediately see how it affects 

the output and generated assembly. Most of the examples can also be run in a Renode simulator on 

an ARM Cortex M0 target and are available on GitHub (https://github.com/PacktPublishing/

Cpp-in-Embedded-Systems/tree/main/Chapter16).

FSM – a simple implementation
We will jump straight into an example of an FSM handling Bluetooth Low Energy (BLE) device 

connection states, analyze its shortcomings, and see how we can improve it using the State de-

sign pattern.

The example FSM will be simplified for the purpose of clarity and easier understanding. We will 

have three states – idle, advertising, and connected. Here is a state diagram of the example FSM:

https://godbolt.org/
https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter16
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter16
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Figure 16.1 – BLE device connection state diagram

Figure 16.1 depicts the state diagram of the BLE device connection FSM. The diagram depicts tran-

sitions between states and actions described as follows:

•	 The default state is idle. It transitions to the advertising state on a ble_button_pressed 

event. During the transition, the start_advertising action is executed. In simple words, 

this means that if the device is in an idle state and a user presses a designated button, it 

will start advertising and change state.

•	 From the advertising state, the FSM can transition to connected on a connection_request 

event or go back to idle on the timer_expired state while stopping the advertising by 

executing the stop_advertising action.

•	 When in the connected state, the FSM can go only to idle on the ble_button_pressed 

event while executing the disconnect action.
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Keep in mind that this is an extremely simplified FSM we are using for the purpose of an example, 

and a real-life FSM would include more states and events to properly describe the connecting 

behavior of a BLE device.

An FSM can also be described using state transition tables. This table shows the state to which 

the FSM moves based on the current state and input (received event), as well as the action it per-

forms during the transition. Here is the transition table for the BLE device FSM we are analyzing 

in this chapter: 

Current State Event Next State Action

idle ble_button_pressed advertising start_advertising

advertising timer_expired idle stop_advertising

advertising connection_request connected

connected ble_button_pressed idle disconnect

Table 16.1 – BLE device state transition table

Table 16.1 describes the BLE device FSM by listing transitions in rows. It serves as an alternative 

to the state diagram for describing FSM behavior. We will start with the implementation of this 

FSM first by defining states and events.

Describing states and events
We will model states and events as enumerators, as shown in the following code:

enum class ble_state {

    idle,

    advertising,

    connected

};

enum class ble_event {

    ble_button_pressed,

    connection_request,

    timer_expired

};

The preceding enumerators describe states and events for our BLE device FSM.
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Tracking current state and handling events – the FSM class
Next, we will define a class ble_fsm that will keep track of the current state and provide a public 

method, handle_event, which we will use to feed the FSM with events. The code is as follows:

class ble_fsm {

public:

    void handle_event(ble_event event);

    ble_state get_state() const {

        return current_state_;

    }

private:

    ble_state current_state_ = ble_state::idle;

    void start_advertising() {

        printf("Action: start_advertising()\n");

    }

    void stop_advertising() {

        printf("Action: stop_advertising()\n");

    }

    void disconnect() {

        printf("Action: disconnect()\n");

    }

};

In the code above, we define the class ble_fsm with the following members:

•	 ble_state current_state_ – A private member with the default value ble_state::idle. 

We use it to track the current state, and the initial value is set to idle.

•	 void start_advertising() – A private method used to implement an action.

•	 void stop_advertising() – A private method used to implement an action.

•	 void disconnect() – A private method used to implement an action.

•	 ble_state get_state() const – A private method used to retrieve the current state.

•	 void handle_event(ble_event event) – A public method used to respond to events 

by executing actions and changing the current state depending on the current_event_.
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The handle_event method implements the actual behavior of the FSM, and the code for it is 

shown here:

void ble_fsm::handle_event(ble_event event) {

switch (current_state_) {

    case ble_state::idle:

    if (event == ble_event::ble_button_pressed)

    {

        start_advertising();

        current_state_ = ble_state::advertising;

    }

    break;

    case ble_state::advertising:

    if (event == ble_event::connection_request)

    {

        current_state_ = ble_state::connected;

    }

    else if (event == ble_event::timer_expired)

    {

        stop_advertising();

        current_state_ = ble_state::idle;

    }

    break;

    

    case ble_state::connected:

    if (event ==ble_event::ble_button_pressed)

    {

        disconnect();

        current_state_ = ble_state::idle;

    }

    break;

    

    default:

    break;

}

}
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The preceding code shows the implementation of the handle_event method for the ble_fsm 

class. It uses a switch statement on current_state_ to handle the event according to it and 

receive the event. The event is handled by calling an appropriate action and changing the state 

as described by the FSM.

Next, we will see how to use the ble_fsm class.

Using the ble_fsm class
We will first define a helper function, state_to_string, used to debug our FSM. The code is shown 

here:

static const char* state_to_string(ble_state state) {

    switch (state) {

        case ble_state::idle:        return "idle";

        case ble_state::advertising: return "advertising";

        case ble_state::connected:   return "connected";

        default:                     return "unknown";

    }

}

The state_to_string function returns a string literal for a given state enum.

Next, let us see how to use the ble_fsm class, as shown in the following code:

int main() {

    ble_fsm my_ble_fsm;

    const auto print_current_state = [&]() {

        printf("Current State: %s\n",

            state_to_string(my_ble_fsm.get_state()));

    };

    print_current_state();

    my_ble_fsm.handle_event(ble_event::ble_button_pressed);

    print_current_state();

    my_ble_fsm.handle_event(ble_event::connection_request);

    print_current_state();
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    my_ble_fsm.handle_event(ble_event::ble_button_pressed);

    print_current_state();

   

    return 0;

}

The preceding code in the main function creates an object, my_ble_fsm, of the ble_fsm type, and 

it feeds it with events in the following order:

1.	 It first passes ble_event::ble_button_pressed to the FSM handle_event method. The 

initial state of the FSM is idle, and after this event, it will transition to advertising.

2.	 Next, it passes the ble_event::connection_request event to the FSM, which will make 

it transition to the connected state.

3.	 Finally, it passes the ble_event::ble_button_pressed event to the FSM for the second 

time, making it transition back to the idle state.

The code above uses the state_to_string function to get the string literal from the state enum, 

and it uses it to print the current state of the FSM after it feeds it with an event.

Analyzing the output
Running the full example will provide the following output:

Current State: idle

Action: start_advertising()

Current State: advertising

Current State: connected

Action: disconnect()

Current State: idle

The preceding output shows FSM states and the executed actions.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed 

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build

$ cmake --build build --target run_in_renode



Chapter 16 313

The approach for implementing an FSM we just went through works well for simple FSMs. In 

real-life applications, FSMs are more complex – they have more states, actions, and events. The 

handle_event method in ble_fsm doesn’t scale well as it is implemented using switch-case and 

if-else logic. Adding more states, and handling more events and actions, makes it less readable 

and harder to maintain.

Next, we will see how we can utilize the State design pattern to mitigate these issues.

FSM – implementation using the State pattern
Building on our switch-based approach, we will now refactor the BLE device connection FSM using 

the State design pattern. This pattern is “state-centric,” meaning each state is encapsulated as its 

own class. A common base class interface will allow the FSM to store pointers to these concrete 

state classes in a container.

In a typical FSM, states change dynamically at runtime in response to external interrupts and timers. 

In our example, we will continue using an enum to differentiate states and store the current one 

in a private member variable. This enum-based approach still works well with the State pattern, 

since it lets us quickly locate and switch between the concrete state objects that the FSM manages. 

We will start the implementation with the state class interface.

Understanding state class interfaces
The state class interface is shown in the following code:

class state {

public:

    virtual ble_state handle_event(ble_event event) = 0;

    virtual ble_state get_state_enum() = 0;

};

In the preceding code, we see that the state interface is simple and has two pure virtual methods:

•	 virtual ble_state handle_event(ble_event event) – A method intended to be  

implemented by a derived class to handle an actual event. It returns a ble_state enum 

to signal a new state to an FSM. If handling an event doesn’t cause transition, it should 

return the enum that corresponds to the current state.

•	 virtual ble_state get_state_enum() – A method used to return a ble_state enum 

corresponding to an actual state.
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Next, we will go over the implementation of concrete state classes: idle, advertising, and 

connected. We will start with the idle class, as shown in this code:

class idle : public state{

public:

    ble_state handle_event(ble_event event) {

        if (event == ble_event::ble_button_pressed) {

            start_advertising();

            return ble_state::advertising;

        }

        return get_state_enum();

    }

    ble_state get_state_enum() {

       return ble_state::idle;

    }

private:

    void start_advertising() {

        printf("Action: start_advertising()\n");

    }

};

In the preceding code, we see that the idle class implements pure virtual methods defined in 

the state interface class:

•	 ble_state handle_event(ble_event event) – The idle class checks whether the re-

ceived event is ble_event::ble_button_pressed and calls start_advertising if it is and 

returns the ble_state::advertising enum. In the case that it receives any other event, it 

returns the state provided with get_state_enum.

•	 ble_state get_state_enum()  – This returns the ble_state enum corresponding to the 

idle class, which is ble_state::idle.

Next, we will go through the derived class advertising, as shown in the following code:

class advertising : public state{

public:

    ble_state handle_event(ble_event event) {

        if (event == ble_event::connection_request) {

            return ble_state::connected;

        }
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        if (event == ble_event::timer_expired) {

            stop_advertising();

            return ble_state::idle;

        }

        return get_state_enum();

    }

    ble_state get_state_enum() {

       return ble_state::advertising;

    }

private:

    void stop_advertising() {

        printf("Action: stop_advertising()\n");

    }

};

In this code, the advertising class implements pure virtual methods defined in the state inter-

face class by handling the events appropriately.

Next, we will go over the connected concrete class:

class connected : public state{

public:

    ble_state handle_event(ble_event event) {

        if (event == ble_event::ble_button_pressed) {

            disconnect();

            return ble_state::idle;

        }

        return get_state_enum();

    }

    ble_state get_state_enum() {

       return ble_state::connected;

    }

private:

    void disconnect() {

        printf("Action: disconnect()\n");

    }

};
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As we can see in the preceding code, the connected class implements a state interface and  

implements the virtual methods handle_event and get_state_enum appropriately.

Next, we will refactor the ble_fsm class to use the state class interface to store pointers to concrete 

class objects in a container.

Refactoring the ble_fsm class
We will start with refactoring the ble_fsm class, as shown in the following code:

class ble_fsm {

public:

    void handle_event(ble_event event) {

        if(auto the_state = get_the_state(current_state_)) { 

            current_state_ = the_state->handle_event(event);

        }

    }

    ble_state get_state() const {

        return current_state_;

    }

    void add_state(state *the_state) {

        states_.push_back(the_state);

    }

private:

    ble_state current_state_ = ble_state::idle;

    etl::vector<state*, 3> states_;

    state* get_the_state(ble_state state_enum); };

Let us break down the implementation of the ble_fsm class:

•	 ble_state current_state_ – A private member with the default value ble_state::idle. 

We use it to track the current state, as we did previously.

•	 etl::vector<state*, 3> states_ – A container used to hold pointers to the state inter-

face. If you are following this example using Compiler Explorer, you can replace it with 

std::vector (and include a <vector> header).
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•	 state* get_the_state(ble_state state_enum) – A private method used to get an actual 

state using the ble_state enum.

•	 void handle_event(ble_event event) – A public method used to handle events. It calls 

the get_the_state method provided with current_state_ to get a pointer to the actual 

state object. If the pointer is valid, it calls handle_event on the state object and stores the 

return value in current_state_.

Next, let us go through the get_the_state method implementation, as shown here:

state* ble_fsm::get_the_state(ble_state state_enum) {

const auto is_state_enum = [&](state* the_state) {

        return the_state->get_state_enum() == state_enum;

};

auto it = std::find_if(states_.begin(), states_.end(), is_state_enum);

if (it != states_.end()) {

    return *it;

}

return nullptr;

}

In the get_the_state method, we use the std::find_if function (from the <algorithm> header) 

to search for a pointer to a state object that matches the given state_enum. The search uses the 

is_state_enum lambda as a predicate, which compares each state’s enum value. If a matching 

state is found, the method returns a pointer to it; otherwise, the nullptr.

Next, let us see how to use the refactored ble_fsm class, the state interface, and the concrete 

classes idle, advertising, and connected to implement the FSM.

Implementing the State pattern
Next, we will see how to use the above implementation of the State pattern in the following code:

int main() {

    ble_fsm my_ble_fsm;

    idle idle_s;

    advertising advertising_s;
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    connected connected_s;

    my_ble_fsm.add_state(&idle_s);

    my_ble_fsm.add_state(&advertising_s);

    my_ble_fsm.add_state(&connected_s);

    const auto print_current_state = [&]() {

        printf("Current State: %s\n",

            state_to_string(my_ble_fsm.get_state()));

    };

    print_current_state();

    my_ble_fsm.handle_event(ble_event::ble_button_pressed);

    print_current_state();

    my_ble_fsm.handle_event(ble_event::connection_request);

    print_current_state();

    my_ble_fsm.handle_event(ble_event::ble_button_pressed);

    print_current_state();

   

    return 0;

}

In this code, we see that after creating an object my_ble_fsm of the ble_fsm type, we create instanc-

es of concrete states: idle, advertising, and connected. Then, we add pointers to the concrete 

states to the my_ble_fsm object using the add_state method. Next, we use the FSM as we did in 

the initial implementation and feed it with events.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed 

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build -DMAIN_CPP_FILE_NAME=main_fsm_state_pattern.cpp

$ cmake --build build --target run_in_renode

The example we just went through is using the State design pattern. Next, we will go through the 

generic form of the State design pattern.
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State design pattern
Let us go over the UML diagram of the BLE device connection FSM, as shown in Figure 16.2:

Figure 16.2 – BLE device connection FSM – UML diagram

Figure 16.2 depicts a UML diagram of the BLE device connection FSM. We already went through 

applying the State design pattern to the FSM implementation. Let us summarize it:

•	 The FSM class holds pointers to the state class interface in a container.

•	 The FSM keeps track of the current state.

•	 The FSM delegates handle_event calls to a current concrete state.

•	 Concrete states implement the state interface.

•	 Concrete states implement actions and call them appropriately when handling events.

•	 Concrete states return a new state from the handle_event method. This allows the FSM 

to update the current state.

The state design pattern is a simple yet effective pattern that allows us to break down complex 

switch statements into more manageable code. Still, as we were able to see in the previous example, 

concrete states handle events using if-else logic. With the increasing complexity of an FSM, the 

handle functions can also clutter. To mitigate this, we can apply the tag-dispatching technique.
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State pattern implementation using tag dispatching
In the previous example (in the previous sections), the program flow in event handlers was de-

termined at runtime using if-else logic. Next, we will use the tag-dispatching technique to 

decouple event handling of different events in separate methods. We will rely no longer on the 

ble_event enum, and will create empty types as events instead, as shown in the following code:

struct ble_button_pressed{};

struct connection_request{};

struct timer_expired{};

Now, the class state will overload handle_event virtual methods for every defined event, as 

shown here:

class state {

public:

    virtual ble_state handle_event(ble_button_pressed) {

        return get_state_enum();

    }

    virtual ble_state handle_event(connection_request) {

        return get_state_enum();

    }

    virtual ble_state handle_event(timer_expired) {

        return get_state_enum();

    }

    virtual ble_state get_state_enum() = 0;

};

In this code, we see that the class state is no longer an interface but an abstract class (as not all 

virtual methods are pure). It overloads the handle_event function for types ble_button_pressed, 

connection_request, and timer_expired. It implements all overloads by returning the value 

generated by get_state_enum – a pure virtual method that will be implemented by derived classes, 

that is, concrete states.

Next, let us see the implementation of the advertising class:

class advertising : public state{

public:

    ble_state handle_event(connection_request cr){

        return ble_state::connected;
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    }

    ble_state handle_event(timer_expired te){

        stop_advertising();

        return ble_state::idle;

    }

    ble_state get_state_enum() {

       return ble_state::advertising;

    }

private:

    void stop_advertising() {

        printf("Action: stop_advertising()\n");

    }

};

In this code, we see that the advertising class implements the following overloads of the virtual 

method handle_event:

•	 ble_state handle_event(connection_request cr) returns ble_state::connected.

•	 ble_state handle_event(timer_expired te) calls stop_advertising and returns 

ble_state::idle.

By using overloaded functions, we can implement the handling of different events in separate 

methods and easily dispatch calls to them by calling handle_event with different types. To com-

plete the implementation, we also need to overload the handle_event method in the FSM for all 

possible events. We can do this easily by making it a template method, as shown in the following 

code:

class ble_fsm {

public:

    template<typename E>

    void handle_event(E event) {

        if(auto the_state = get_the_state(current_state_))

        {

            current_state_= the_state->handle_event(event);

        }

    }

//...

};
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The preceding code shows the template method handle_event from the ble_fsm class, which 

makes our tag-dispatching technique application complete.

You can run the full example in the Renode simulator from the book’s GitHub repo. It is placed 

under Chapter16/fsm, and you can build and run it using the following commands:

$ cmake –B build

-DMAIN_CPP_FILE_NAME=main_fsm_state_pattern_tag_dispatch.cpp

$ cmake --build build --target run_in_renode

Until this point, we saw three approaches in this chapter to implement an FSM in C++. We start-

ed with a simple switch and if-else-based approach, applied the State design pattern, and then 

utilized tag dispatching. Each step provided us with more flexibility in the design – making code 

more readable and easier to manage, which is important when working with complex FSMs.

There are other approaches to implementing an FSM, based on a state transition table, which 

describes transitions in a single place. Boost State Machine Language (SML) uses a table-based 

approach to describe an FSM using descriptive syntax.

Boost SML
Boost SML is a highly expressive C++14 single header library used to implement FSMs. We will jump 

straight ahead in using it by implementing the same BLE device connection FSM. Here is the code:

#include "sml.hpp"

namespace sml = boost::sml;

struct ble_button_pressed{};

struct connection_request{};

struct timer_expired{};

constexpr auto start_advertising = [](){

    printf("Action: start_advertising()\n");

};

constexpr auto stop_advertising = [](){

    printf("Action: stop_advertising()\n");

};

constexpr auto disconnect = [](){
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    printf("Action: disconnect()\n");

};

struct ble_fsm {

  auto operator()() const {

    using namespace sml;

        return make_transition_table(

        *"idle"_s + event<ble_button_pressed>

        / start_advertising                          = "advertising"_s,

        "advertising"_s  + event<connection_request> = "connected"_s,

        "advertising"_s  + event<timer_expired>     

        / stop_advertising                           = "idle"_s,

        "connected"_s + event<ble_button_pressed>

        / disconnect                                 = "idle"_s

    );

  }

};

Let us break down this example:

•	 The events are modeled as structs, the same as in our tag-dispatching implementation.

•	 Actions are defined as constexpr lambdas.

•	 We define the type ble_fsm as a struct with an overloaded operator(), which returns the 

result of a call to make_transition_table from the namespace sml.

The code in make_transition_table allows SML to extract transition definitions, and within 

it, we are using the following syntax: src_state + event [ guard ] / action = dst_state. 

Here is a breakdown of the syntax:

•	  src_state – This is the state from which the transition starts.

•	 + event – This is the event that triggers checking for a possible transition. If the event 

arrives and the guard is satisfied, then the transition proceeds.

•	 [ guard ] – The guard is an optional bool predicate that must evaluate to true for the  

transition to occur. If omitted, the transition happens unconditionally at the specified 

event.

•	 / action – The action is an optional lambda to execute whenever the transition takes place.

•	 = dst_state – The destination state is where the FSM will go if the transition occurs.
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The transition syntax is the essence of SML. By writing multiple lines of these rules inside the 

operator(), we fully describe the FSM's behavior in a declarative, human-readable way.

Let us now see how to use the FSM we discussed using Boost SML:

    sm<ble_fsm> my_ble_fsm{};

    const auto print_current_state = [&]() {

        printf("Current State: ");

        if(my_ble_fsm.is("idle"_s)) {

            printf("idle\n");

        }

        if(my_ble_fsm.is("advertising"_s)) {

            printf("advertising\n");

        }

        if(my_ble_fsm.is("connected"_s)) {

            printf("connected\n");

        }

    };

    print_current_state();

    my_ble_fsm.process_event(ble_button_pressed{});

    print_current_state();

    my_ble_fsm.process_event(connection_request{});

    print_current_state();

    my_ble_fsm.process_event(ble_button_pressed{});

    print_current_state();

In this code, we create an object my_ble_fsm of the type sm<ble_fsm>. Then, we use the process_

event method to send an event to it. You can run the full example in the Renode simulator from 

the book’s GitHub repo. It is placed under Chapter16/fsm, and you can build and run it using 

the following commands:

$ cmake –B build -DMAIN_CPP_FILE_NAME=main_fsm_boost_sml.cpp

$ cmake --build build --target run_in_renode
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Boost SML is a highly expressive library that reduces boilerplate code from the previous imple-

mentations of an FSM. It also offers features such as guard variables and composite states. Here 

is a project link where you can explore more: https://github.com/boost-ext/sml.

Boost SML is not only an expressive library but also highly performant, thanks to its use of com-

pile-time template metaprogramming to aggressively optimize code. Event dispatching relies 

on tag dispatching (resolved at compile time) paired with minimal runtime lookups, avoiding 

costly branching or indirection. This approach typically outperforms both manual switch-enum-

based solutions and State pattern-based implementations (which incur virtual call overhead). For 

concrete performance comparisons, see the benchmark at the following link: https://github.

com/boost-ext/sml?tab=readme-ov-file#benchmark.

Summary
In this chapter, we went through FSM implementation starting from the simple switch-case-

based approach, to the State pattern, tag dispatching, and using the Boost SML library for highly 

expressive code.

The most basic, switch-based implementation is suitable for small FSMs with a limited number of 

states and transitions. When the complexity of an FSM increases, it gets hard to read and manage. 

Moving to a State pattern-based solution increases code readability and makes changes easier. 

Boost SML offers ultimate expressiveness, providing us with a human-readable syntax that allows 

us to write very complex FSMs in a concise manner.

In the next chapter, we will go through an overview of libraries and frameworks in C++ usable 

for embedded systems development.

https://github.com/boost-ext/sml
https://github.com/boost-ext/sml?tab=readme-ov-file#benchmark
https://github.com/boost-ext/sml?tab=readme-ov-file#benchmark
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Libraries and Frameworks

While the C++ standard library offers a vast array of containers and algorithms, certain aspects 

– such as dynamic memory allocation – can pose challenges in constrained environments. In 

Chapter 2, we explored some of these issues and ways to address them. However, specialized 

libraries, like the Embedded Template Library (ETL), offer deterministic behavior and fixed 

memory footprints, making them well suited for embedded systems.

Embedded applications depend on Hardware Abstraction Layers (HALs) provided by vendors 

as C libraries. In Chapter 12, we examined how to use interfaces to decouple application-level C++ 

code from the underlying C-based hardware interactions. Wrapping entire HALs in C++ is a lot of 

work, but luckily, there are projects such as Google’s Pigweed that are tackling exactly that, while 

offering additional functionality and flexibility for embedded development.

In Chapter 11, we explored how C++ can perform computations at compile time, reducing memory 

footprint. In Chapter 15, we learned about the Observer pattern and examined its compile-time 

implementation. Intel’s Compile-time Initialization and Build (CIB) elevates these ideas even 

further, enabling a declarative approach to configuring firmware applications at compile time. 

In this chapter, we will go through the following C++ libraries:

•	 Standard library

•	 Embedded template library

•	 Pigweed

•	 Compile-time Initialization and Build
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Technical requirements
You can try the examples from this chapter in the Renode simulator in the Docker container you 

set up in Chapter 4. Make sure that the Docker container is running. 

You can find the files for this chapter on GitHub at https://github.com/PacktPublishing/Cpp-

in-Embedded-Systems/tree/main/Chapter17.

Standard library
The C++ standard defines two types of standard library implementation – hosted and freestanding: 

•	 A freestanding implementation is designed to run without relying on services typically 

provided by an OS, such as filesystem access or multi-threading support. As a result, the 

C++ standard specifies only a limited subset of standard library headers that must be 

provided by a freestanding implementation.

•	 A hosted implementation requires a globally defined main function, and the environment 

is responsible for invoking this function at startup. In a freestanding implementation, 

the startup routines and the entry point of the program are implementation-defined, 

allowing developers greater flexibility in specifying the initialization and execution flow 

of their applications.

Although the standard makes a clear distinction between hosted and freestanding implementa-

tion in terms of the globally defined main function, the configuration in some examples in this 

book blurs the line between the two.

Freestanding and hosted implementations in GCC
Even though we operate in a freestanding environment (no OS), some examples in this book use 

components from the C++ standard library (e.g., std::function), which are typically associated 

with hosted implementations. This is possible because:

•	 As we observed in Chapter 4, we set the program entry point in the linker script to Reset_

Handler.

•	 Reset_Handler, implemented in the assembler startup script, performs low-level initial-

ization and explicitly calls main.

•	 We use nano specs (Chapter 7), linking against a size-optimized subset of the C++ stan-

dard library. This allows limited use of hosted features like std::function while avoiding 

dependencies on an OS.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17
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This hybrid approach leverages GCC’s flexibility to combine freestanding execution (custom 

entry point, no OS) with hosted library features (standard headers, utilities) in a bare-metal 

environment.

To explicitly request GCC to use a freestanding implementation of the standard library, the com-

piler flag -ffreestanding should be used. The C++ standard library provides many components 

that are “pay only for what you use” and can be very useful even in resource‐constrained envi-

ronments. In previous chapters, you’ve already worked with many parts of the standard library, 

so you have a solid understanding of its capabilities. Here, we’ll provide an overview of the parts 

that are best suited for resource‐constrained environments and point out which ones should be 

used with caution or avoided.

Numeric and math
Embedded systems are often employed in automation and process control, requiring precise con-

trol over numeric types, their ranges, and math operations. The C++ standard library provides the 

<cstdint>, <limits>, and <cmath> headers to define fixed-width integers, query numeric limits, 

and perform mathematical computations, helping ensure predictable behavior, portability, and 

efficiency in resource-constrained environments.

<cstdint>
The <cstdint> header provides fixed-width integer types such as std::int8_t, std::uint32_t, 

and other well-known C types defined in stdint.h. These types are useful in embedded contexts 

where integer size and bit width are important for direct hardware register access, predictable 

overflow behavior, and memory usage considerations. By using them, you explicitly document 

your intention for a variable’s size, thereby improving code portability and preventing potential 

surprises when moving between platforms with different native integer widths.

<limits>
The header provides the std::numeric_limits template, which describes properties of funda-

mental numeric types (like minimum and maximum values, sign, and precision). This is especially 

useful in embedded contexts for handling overflow. Typical usage occurs at compile-time or 

through trivial inlining by the compiler, resulting in minimal runtime overhead. By using functions 

like std::numeric_limits::max(), you avoid scattering magic constants or architecture-specific 

assumptions, aiding portability and maintainability.
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<cmath>
The <cmath> header provides standard math functions such as std::sin, std::cos, std::sqrt, 

and more. In embedded environments, especially those without floating-point hardware,  

these functions can be relatively expensive in terms of both runtime performance and code  

size. Carefully consider whether you really need floating-point math, and if so, whether  

approximations or fixed-point routines might be sufficient and more efficient.

Containers and algorithms
Embedded systems often manage structured data and require efficient ways to process it under 

tight resource constraints. The C++ standard library offers container and algorithm headers such 

as <array>, <span>, and <algorithm> to organize data and perform common operations like 

searching, sorting, and transforming, enabling more readable and maintainable code.

std::array
The only fixed-size container in the standard library that avoids dynamic allocation is std::array. 

We covered it in Chapter 1, when we discussed generic types. In the same chapter, we based the 

ring buffer implementation on std::array, which allowed us to create ring buffers of different 

types and sizes using the same generic code.

std::array is typically implemented as a wrapper around a C-style array. Besides being a generic 

type, it also offers the at method for index-based access with runtime bounds checking, making it 

a safer alternative to raw arrays. If an out-of-bounds index is requested, the at method will throw 

an exception. If exceptions are disabled, it may call std::terminate or std::abort, depending 

on the library implementation. These behaviors should be handled according to your system 

requirements by implementing appropriate terminate and signal handlers.

std:: priority_queue
std::priority_queue is a container adapter that provides priority queue functionality. By  

default, it uses std::vector as the underlying container. However, as shown in Chapter 14, you 

can substitute it with etl::vector from ETL, avoiding issues with dynamic memory allocation.

std:: span
As shown in Chapter 9, std::span is a lightweight, non-owning wrapper around a contiguous 

sequence of objects, where the first element is at position 0. It provides essential functionality 

such as the size() method, operator[] for element access, and the begin() and end() iterators, 

allowing it to integrate seamlessly with standard library algorithms.
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std::span can be constructed from C-style arrays as well as containers like std::array and 

std::vector or etl::vector. This makes it a practical alternative to using separate pointer and 

size parameters, which is especially useful when interfacing C++ code with C libraries such as 

those used in HAL.

Iterators
Iterators are abstractions that act like generalized pointers, providing a uniform way to traverse 

and access elements within a container. For example, standard library containers implement the 

begin() and end() methods, which return iterators marking the start and one-past-the-end of 

their sequence. This consistent interface allows algorithms to work generically over different 

container types, enhancing code reusability and clarity.

Let us go through the following example using std::array:

#include <array>

#include <algorithm>

#include <cstdio>

int main() {

    std::array<int, 5> arr = {5, 3, 4, 1, 2};

    std::array<int, 5>::iterator start = arr.begin();

    auto finish = arr.end();

    std::sort(start, finish);

    for (auto it = arr.begin(); it != arr.end(); ++it) {

        printf("%d ", *it);

    }

    printf("\n");

    return 0;

}

This example demonstrates how to use iterators with a standard library container:

•	 The iterator start is explicitly declared as std::array<int, 5>::iterator to  

illustrate the full type name, while the iterator finish is declared using auto for  

conciseness, allowing the compiler to deduce its type.

•	 The std::sort algorithm is applied using the iterators start and finish, obtained from 

arr.begin() and arr.end(), to sort the array in ascending order.

•	 The loop uses auto to declare the iterator it, which makes the code more concise. The 

loop traverses the sorted array, and printf is used to print each element.
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Iterators are used to traverse containers. They not only promote generic programming but also 

make it easy to switch container types without changing the algorithmic logic.

Algorithms
Algorithms from the standard library offer a consistent way to solve common problems across 

different containers, making the code more expressive and easier to maintain. They allow you 

to perform operations like searching, sorting, copying, and accumulating data using a uniform 

interface. Some of the most used algorithms are listed here:

•	 std::sort: Sorts a range of elements in ascending order by default, using the less-than 

operator for comparison. It can also accept a custom comparator to sort based on different 

criteria, such as descending order or a specific object property.

•	 std::find: Searches for the first occurrence of a given value in a range and returns an  

iterator to it. If the value is not found, it returns the end iterator, signaling that the  

search failed.

•	 std::for_each: Applies a specified function or lambda to each element in a range.

•	 std::copy: Copies the elements of one range into another destination range.

•	 std::copy_if: Copies only elements that satisfy a specified predicate, making it useful 

for filtering data as you copy.

•	 std::min and std::max: Return the smaller or larger of two values, respectively, using 

the less-than operator by default (or a provided comparison function). They’re handy for 

quick comparisons where you just need the minimum or maximum of two values.

•	 std::min_element and std::max_element: Return an iterator to the smallest or largest 

element in a range. These are useful when you need to find the position of an extreme 

value in a container (instead of comparing just two values).

•	 std::accumulate: Iterates over a range and combines the elements with an initial value 

using a binary operation (default is addition). This allows for summing values, computing 

products, or performing any custom aggregation you define.

Template metaprogramming
As discussed in Chapter 8, C++ type traits are compile-time predicates and transformations that 

allow the compiler to enforce constraints based on a type’s properties. They are used for writing 

generic, robust code without incurring runtime overhead. In Chapter 12, we used type traits to 

create type-safe register access, preventing invalid type usage at compile time and reducing the 

risk of subtle errors.
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Here are some concrete type traits we’ve utilized in the chapters mentioned in this section:

•	 std::enable_if: Enables or disables function templates based on a Boolean compile-time 

expression

•	 std::is_same: Checks if two types are exactly the same

•	 std::is_enum: Checks if a type is an enumeration type

•	 std::underlying_type: Retrieves the underlying integer type of an enum

•	 std::is_arithmetic: Checks if a type is an arithmetic type (integral or floating-point)

•	 std::is_integral: Checks if a type is an integral type

•	 std::is_floating_point: Checks if a type is a floating-point type

Parts of the standard library to avoid in embedded 
applications
Many containers from the standard library, such as std::vector, std::list, and std::string, 

use dynamic memory allocation. If dynamic memory allocation is not allowed in your embedded 

application, these should be avoided.

The iostream library, included with header <iostream>, requires significant memory resources 

and also relies on dynamic allocation. That’s why we used the <cstdio> header and the printf 

function for console output.

In Chapter 10, we covered std::function from the <functional> header. There, we outlined that 

in some scenarios, std::function can use dynamic memory allocation, meaning if used, it should 

be used with caution. Note that std::function is not available in a freestanding implementation.

Next, we will give a short overview of ETL that compliments the standard library in the context 

of restricted embedded environments.

Embedded template library
In Chapter 2, we saw that std::vector uses dynamic memory allocation by default. We also saw 

that we can use std:: polymorphic_allocator and a monotonic buffer to make it use statically 

allocated memory. This approach is still not bulletproof as std::vector in some cases can resort 

to dynamic memory allocation even with this approach.

To address some of the challenges posed by the standard library in embedded contexts, ETL pro-

vides a set of templated containers and algorithms that closely mimic the interfaces of standard 

library counterparts but are tailored for systems with limited resources.
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Fixed-size containers
One of the primary advantages of ETL is that its containers (such as etl::vector, etl::list, 

etl::string, and others) allow you to specify a fixed maximum size at compile time. Container 

implementations ensure that no dynamic memory allocation is performed at runtime as memory 

is reserved up front as atomic or static storage.

As ETL containers are designed to mimic standard library containers, and they implement iterators, 

they can be used with most algorithms and container adapters from the standard library. This 

allows us to leverage components from the standard library without worrying about dynamic 

allocation.

ETL also offers etl::array for platforms that do not support C++11, since std::array was  

introduced in C++11.

Storing a callable with etl::delegate
As shown in Chapter 14, you can use etl::delegate instead of std::function to store a  

callable. However, etl::delegate is non-owning, so you must handle potential dangling  

references carefully.

Other utilities provided by ETL
Besides fixed-size containers and etl::delegate, ETL also provides utilities such as a messaging 

framework – a collection of messages, message routers, message buses, and finite state machines. 

It also offers CRC calculations, checksums, and hash functions.

ETL allows you to configure error handling. It can be configured to throw exceptions or send  

errors to the user-defined handler. This allows greater flexibility and project-based configuration 

depending on system requirements.

You can learn more about ETL at the website https://www.etlcpp.com/.

Next, we will discuss Pigweed – a collection of lightweight, modular C++ libraries for embed-

ded systems, developed by Google, offering components like logging, assertions, and Bluetooth  

connectivity to simplify development and improve code reuse.

https://www.etlcpp.com/
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Pigweed
One of the biggest challenges in embedded systems development is portability. For code to be truly 

portable, it must depend on interfaces. To run it on different hardware targets, someone needs to 

implement those interfaces on different targets. Maintaining consistent interfaces across various 

projects and devices can be difficult. Google’s Pigweed project aims to solve this by providing 

software modules for embedded applications, with hardware interfaces already implemented 

for many targets.

Pigweed is intended for complex projects and large-scale teams. Besides the hardware interfaces, 

it also:

•	 Packs software modules built on top of them, such as logging, serial communication (SPI, 

I2C, and UART), Bluetooth Host Controller Interface (HCI), interactive console, Remote 

Procedure Call (RPC) system, and more.

•	 Provides embedding-friendly alternatives to standard library components: fixed-size 

strings and containers.

•	 Manages the entire toolchain out of the box and simplifies setting up your development 

environment.

•	 Provides an entire framework – pw_system – which pulls together many modules across 

Pigweed to construct a working system with RPC, logging, and more.

As you can see, Pigweed is not only a library – it is an entire development ecosystem. It can be 

used as a framework, but you can also cherry-pick individual modules that suit your needs. As 

stated on the documentation website – https://pigweed.dev/ – Pigweed is still in its early stages; 

some modules are still in development stages, while some are stable and used on devices that are 

already on the market. As with any library, you need to evaluate it for potential use in your projects.

We’ll go through Pigweed’s Sense tutorial to demonstrate some of its capabilities – mainly the 

interactive console and RPC system.

Pigweed’s Sense tutorial
The Sense project is a demo project that utilizes many Pigweed components and shows how they 

work together.

https://pigweed.dev/
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Sense is a simplified version of an air quality sensor that only includes some of the functions of a 

full product. The goal is to give you practical experience with working with Pigweed by following 

these steps:

1.	 First, make sure the Docker daemon is running. Start a Docker image in network host 

mode and attach it to Bash. You can use the following commands in a Linux environment:

$ sudo systemctl start docker

$ docker run --network=host -d -it --name dev_env mahmutbegovic/
cpp_in_embedded_systems

$ docker exec -it dev_env /bin/bash

For the Windows-based host, use the following command to forward the ports needed 

to run the tutorial:

$ docker run -d -it --name dev_env -p 33000:33000 -p 8080:8080 
mahmutbegovic/cpp_in_embedded_systems

2.	 Next, clone the Sense repo:

$ git clone https://pigweed.googlesource.com/pigweed/showcase/sense

3.	 Next, start Visual Studio Code, attach to the running container, and open the /workspace/

sense folder. If you see a pop-up message in Visual Studio Code recommending the  

installation of the Pigweed extension, accept it; otherwise, go to Extensions, search for 

Pigweed, and install it.

Figure 17.1 – Visual Studio Code extension

Figure 17.1 depicts the Visual Studio Code Pigweed extension.

4.	 After the installation of the extension, go to Explorer view and expand the BAZEL BUILD 

TARGETS node. Click on the Refresh Target List button.
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Figure 17.2 – BAZEL BUILD TARGETS node

Refreshing the target list can take between 30 seconds and a couple of minutes. Pigweed 

uses Bazel for build automation. The refreshed target list should look similar to the fol-

lowing:

Figure 17.3 – BAZEL BUILD TARGETS

Figure 17.3 depicts Bazel build targets.
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5.	 Next, expand the //apps/blinky node.

Figure 17.4 – //apps/blinky targets

6.	 Now, we will build a version of the app that runs on the host. Right-click simulator_blinky 

(host_device_simulator_binary) and then click Build Target. The build can take around 

10 minutes. When completed, you should see a message similar to this one:

Figure 17.5 – Successful build
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7.	 After a successful build, we will start the app. Right-click simulator_blinky (host_de-

vice_simulator_binary) and then Run Target. If successful, you should see the following 

message in the terminal: Awaiting connection on port 33000.

8.	 Next, right-click simulator_console (native_binary) and then Run Target. This will build 

a console and connect it to the running simulator. If successful, you should see the fol-

lowing screen:

Figure 17.6 – Interactive console running in terminal view

In Figure 17.6, you can see the interactive console running in the terminal view in Visual 

Studio Code.

9.	 To make the console easier to work with, right-click on Run //apps/blinky:simulator_con-

sole and select Move Terminal into New Window. This will move the console into a 

separate window, as shown in this image:

Figure 17.7 – Interactive console running in a separate window
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In Figure 17.7, in the top-right pane, Device Logs, we can see logs coming from the sim-

ulated device (app running on the host). It sends LED blinking messages every second.

10.	 Next, we will send a message to the device using the RPC protocol, to retrieve the tem-

perature measured by the device. Enter the following command in the bottom-left pane 

– Python Repl:

$ device.rpcs.board.Board.OnboardTemp()

You should see the following response:

$ (Status.OK, board.OnboardTempResponse(temp=20.0))

11.	 Next, send a message that will toggle the LED:

$ device.rpcs.blinky.Blinky.Blink(interval_ms=200, blink_count=3)

This call will make the LED blink three times at a 200 ms interval and afterward stop the 

LED blinking messages. This shows us that we can also provide arguments to RPC calls.

Next, we will go through Pigweed’s RPC in more detail.

RPC and Protocol Buffers
Pigweed’s RPC system is based on Protocol Buffers – a platform-neutral mechanism used for data 

serialization. Protocol Buffers is a language with its own syntax, which can be compiled into a 

targeted language such as C++ on our Sense device and the Python code we used in the Python 

Read Eval Print Loop (REPL).

So, why use an extra layer of abstraction, such as Protocol Buffers, in an embedded application? 

There are a couple of benefits a standardized serialization brings to your projects:

•	 Compact binary messages – they add very little overhead.

•	 A precise contract (a .proto file) between different parts of a system, ensuring that all 

parties agree on the structure and meaning of the exchanged data.

•	 Updates to the communication protocol can be managed by modifying a proto file.

In short, instead of writing serialization and deserialization code in multiple code bases (C++ and 

Python) and maintaining it as such, you write the communication protocol in a proto file and use 

the Protocol Buffers compiler to generate C++ and Python code used for serialization.
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Let us examine a part of the modules/blinky/blinky.proto file describing the Blinky service 

used in the Pigweed’s Sense tutorial section to blink the LED three times at 200 ms intervals in the 

following code:

syntax = "proto3";

package blinky;

import "pw_protobuf_protos/common.proto";

service Blinky {

// Toggles the LED on or off.

rpc ToggleLed(pw.protobuf.Empty) returns(pw.protobuf.Empty);

// Blinks the board LED a specified number of times.

rpc Blink(BlinkRequest) returns (pw.protobuf.Empty);

}

message BlinkRequest {

// The interval at which to blink the LED, in milliseconds. uint32 
interval_ms = 1;

// The number of times to blink the LED.

optional uint32 blink_count = 2;

}

This proto file defines a service called Blinky for controlling an LED, using Protocol Buffers version 3  

(syntax = "proto3"). It imports a common proto file and defines two methods:

•	 ToggleLed: A simple method that switches the LED on or off, using an empty request 

and response.

•	 Blink: A method that blinks the LED with a configurable interval_ms and optional 

blink_count (members of BlinkRequest). The use of the optional keyword means this 

parameter can be omitted when calling the method.

This is a short explanation of the blinky.proto file. A more thorough guide to Protocol Buffers 

can be found at the following website: https://protobuf.dev/programming-guides/proto3/.

For each service in a blinky proto file, Pigweed’s code generator will generate a corresponding 

C++ class. The generated Blinky class resides in a dedicated pw_rpc::nanopb sub-namespace 

within the file’s package: blinky::pw_rpc::nanopb::Blinky::Service.

https://protobuf.dev/programming-guides/proto3/
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The generated class serves as a base class that must be inherited to implement the service’s meth-

ods. It is templated on the derived class. The BlinkyService class implements the base class. The 

following code is part of its definition from the modules/blinky/service.h file:

class BlinkyService final : public ::blinky::pw_
rpc::nanopb::Blinky::Service {

public:

    pw::Status ToggleLed(const pw_protobuf_Empty&, pw_protobuf_Empty&);

    pw::Status Blink(const blinky_BlinkRequest& request, pw_protobuf_Empty&);

private:

    Blinky blinky_;

};

BlinkyService bridges the generated RPC interface with the concrete implementation for con-

trolling the LED. It has a private object, blinky_, of type Blinky, which is used to control an LED, 

as shown in the implementation of the ToggleLed and Blink methods in the following code block 

from the modules/blinky/service.cc file:

pw::Status BlinkyService::ToggleLed(

const pw_protobuf_Empty&,

pw_protobuf_Empty&)

{

    blinky_.Toggle();

    return pw::OkStatus();

}

pw::Status BlinkyService::Blink(

const blinky_BlinkRequest& request,

pw_protobuf_Empty&) 

{

    uint32_t interval_ms = request.interval_ms;

    uint32_t blink_count = request.has_blink_count;

    return blinky_.Blink(blink_count, interval_ms);

}

In this code, the methods ToggleLed and Blink use the blinky_ object to control the LED. When 

binary proto messages for the blinky service are received over a transport layer, they are converted 

into actual calls to the code used to control hardware, which is the essence of RPC.
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As an exercise, expand the blinky service by adding the BlinkTwice method. You already know the 

files where you need to make changes – the proto file and the BlinkyService implementation files.

Pigweed uses nanopb (https://github.com/nanopb/nanopb) to compile proto files in C files and 

then wrap them in C++. There is a pure C++ implementation of Protocol Buffers designed especially 

for microcontrollers – Embedded Proto. It is an object-oriented implementation that only uses 

static memory allocation. It has been developed using the MISRA C++ guidelines. These traits 

together make Embedded Proto suitable for applications with a wide range of requirements, from 

low memory usage to safety concerns. You can find more about it on the GitHub page: https://

github.com/Embedded-AMS/EmbeddedProto.

Pigweed has a steep learning curve and should be carefully evaluated based on your system 

requirements. It is better suited for larger, more complex projects due to the learning overhead. 

Additionally, evaluate the hardware support and take into consideration the memory overhead 

some modules may introduce.

In contrast to Pigweed, Intel’s CIB library leverages C++ compile-time capabilities. This approach 

minimizes memory overhead while enhancing flexibility and expressiveness. Next, we will cover 

the CIB library.

Compile-time Initialization and Build
One of C++’s major advantages in embedded systems is its ability to perform compile-time compu-

tation. In most cases, we have significant knowledge about the application beforehand, allowing 

us to configure it at compile time. Intel’s CIB library provides a declarative interface for configuring 

firmware components during compilation.

As you saw in Chapter 15, the Observer design pattern is commonly used in event-driven systems 

to decouple the source of events (publisher) from the entities that react to those events (observers 

or subscribers). By using a subscriber interface, observers can register themselves with the event 

source, which then notifies them of changes or events without needing to know details about 

the observers’ implementations.

This decoupling allows for greater flexibility and modularity in system design, as components 

can be added, removed, or modified without tightly coupling them to the event generator. This 

property is leveraged by the CIB library, which implements a compile-time observer pattern to 

provide a declarative interface for configuring firmware applications. By resolving dependencies 

and establishing event-driven relationships at compile time, CIB eliminates runtime overhead 

while keeping components loosely coupled and efficiently interconnected.

https://github.com/nanopb/nanopb
https://github.com/Embedded-AMS/EmbeddedProto
https://github.com/Embedded-AMS/EmbeddedProto
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We will start exploring the CIB library on a simple example of a temperature publisher. The entire 

example is available at https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/

tree/main/Chapter17/cib. You can run it using the following commands:

$ cmake –B build

$ cmake --build build --target run_in_renode

You can use app/src/main.cpp to follow through the example, as CIB, at the time of writing, is 

not available as a library in Compiler Explorer.

Using CIB in a temperature publisher example
Let’s begin with the following steps:

1.	 We first need to declare a service (publisher) as an empty struct that inherits from 

callback::service, a variadic class template, provided with types that will be accepted 

by subscribers, as shown in the following code:

struct send_temperature : public callback::service<float> {};

2.	 Next, we will create the subscribers (also called components in the context of the CIB 

library) display_temperature_component and data_sender_component, as shown in 

this code:

struct display_temperature_component {

constexpr static auto display_temperature = [](float temperature) {

    printf("Temperature is %.2f C\r\n", temperature);

};

constexpr static auto config = cib::config(

    cib::extend<send_temperature>(display_temperature)

);

};

struct data_sender_component {

constexpr static auto send_temp = [](float temp) {

    printf("Sending temperature %.2f C\r\n", temp);

};

constexpr static auto config = cib::config(

    cib::extend<send_temperature>(send_temp)

);

};

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17/cib
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter17/cib
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The preceding code defines two components, which do the following:

•	 Provide handlers for the send_temperature service in the constexpr lambdas 

display_temperature and send_temp.

•	 Define the constexpr static auto config member through which they extend 

the service (subscribe to the events).

Config members are instances of variadic template class cib::config, and they are used by 

the CIB library to wire the application at compile time, that is, to connect services (event 

generators, publishers) with software components that extend those services (observers). 

Compile-time initialization and the build process are performed by cib::nexus, which 

needs to be supplied with the project configuration. Here is the code for configuration 

for this simple project:

struct my_project {

constexpr static auto config = cib::config(

    cib::exports<send_temperature>,

                   

    cib::components<display_temperature_component,

                    data_sender_component>

);

};

This project configuration is a simple struct, my_project, with the constexpr member 

config, which is provided with the following:

•	 cib::exports<send_temperature>: Used to declare services (publishers)

•	 cib::components<display_temperature_component, data_sender_component>: 

Used to declare software components that can extend services

3.	 Next, let’s see how we use all of this in a firmware application in the following code:

int main() {

    cib::nexus<my_project> nexus{};

    nexus.init();

    for(int i = 0; i < 3; i++)

    {

        nexus.service<send_temperature>(42.0f);

    }

    return 0;

}
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In this code, we perform these steps:

•	 cib::nexus<my_project> nexus{};: Create an instance of the class template 

cib::nexus provided by the project configuration my_project.

•	 nexus.init();: Initialize Nexus.

•	 nexus.service<send_temperature>(42.0f);: Access the service and provide 

it with the float argument (temperature). This will trigger calls to lambdas in 

components that extend the send_temperature service.

Extending the temperature publisher example
Next, we will extend this simple example with two components – a dummy temperature sensor 

and I2C components that we will name temperature_sensor_component and i2c. We will also 

introduce two new services – runtime_init and main_loop:

1.	 Let’s start with defining new services in this code:

struct runtime_init : public flow::service<> {};

struct main_loop : public callback::service<> {};

Here, we define two services:

•	 runtime_init: Derives from the variadic class template flow::service, allowing 

us to sequence actions

•	 main_loop: Derives from callback::service, which will be called in the main 

while loop

2.	 We will move now to implementations of I2C components, as shown in this code:

struct i2c {

constexpr static auto init = flow::action<"i2c_init">(

    [](){

        printf("I2C init ...\r\n");

    });

constexpr static auto config = cib::config(

    cib::extend<runtime_init>(*init)

);

};
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This code defines a new component – i2c – as a struct with:

•	 constexpr static auto init: A lambda wrapped in flow::action that imple-

ments the initialization of the I2C peripheral.

•	 constexpr static auto config: Adds the above action to the runtime_init flow 

service. The * operator explicitly adds an action to the flow. Without it, the action 

is referenced but never added, causing a compile-time error.

3.	 Next, let’s go through the temperature sensor component shown in the following code:

struct temperature_sensor_component {

constexpr static auto init = flow::action<"temp_sensor_init">(

    []() {

        printf("Initializing temperature sensor ... \r\n");

    });

constexpr static auto read_temperature = []() {

    float temperature = 23.4f;

    cib::service<send_temperature>(temperature);

};

constexpr static auto config = cib::config(

 

    cib::extend<main_loop>(read_temperature),

    cib::extend<runtime_init>(i2c::init >> *init)

);

};

The preceding code shows the struct temperature_sensor_component with the following 

members:

•	 constexpr static auto init: A flow_action that implements the initialization 

of the temperature sensor

•	 constexpr static auto read_temperature: A lambda that implements periodic 

readings of a temperature sensor and uses cib::service<read_temperature> to 

publish the read value
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•	 constexpr static auto config: Extends the main_loop service with the read_

temperature lambda and the runtime_init flow with i2c::init >> *init, in-

dicating that i2c::init precedes init

4.	 Next, we need to modify the my_project struct to export new services and add new com-

ponents, as shown in this code:

struct my_project {

constexpr static auto config = cib::config(

    cib::exports<runtime_init,

                 main_loop,

                 send_temperature>,

                   

    cib::components<i2c,

                    temperature_sensor_component,

                    display_temperature_component,

                    data_sender_component>

);

};

In this code, we simply added:

•	 The runtime_init and main_loop services to cib::exports

•	 i2c and temperature_sensor_component to cib::components

5.	 Finally, let us see the new main function, as shown here:

int main() {

    cib::nexus<my_project> nexus{};

    nexus.init();

    nexus.service<runtime_init>();

    for(int i = 0; i < 3; i++)

    {

        nexus.service<main_loop>();

    }

    return 0;

}
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As previously, we first create a cib::nexus instance and initialize it. Then, we perform 

the following steps:

1.	 nexus.service<runtime_init>(): This will run all actions in the flow runtime_

init and ensure the specified order of actions.

2.	 nexus.service<main_loop>(): This is a call in the main loop executing all lambdas 

that are extending this service.

This structure is typical for many firmware applications: initialize all components (including 

hardware peripherals), then repeatedly call relevant services in the main loop. Any changes to 

the application are done in the my_project struct in a declarative way – by extending services 

and adding or removing components. All initialization is performed in the components them-

selves, meaning the main function does not need to know the details of individual components 

and their dependencies.

The CIB library also includes logging, interrupt, message, and string constant libraries – all le-

veraging C++’s compile-time computation. You can find more information about CIB on GitHub: 

https://github.com/intel/compile-time-init-build.

You can run the full CIB example in Renode. Start Visual Studio Code, attach it to the running 

container, open the Chapter17/cib project, as described in Chapter 4, and run the following 

commands in the Visual Studio Code terminal, or run them directly in the container terminal:

$ cmake –B build

$ cmake --build build --target run_in_renode

Running the above example will generate the output shown here:

I2C init ...

Initializing temperature sensor ...

Sending temperature 23.40 C

Temperature is 23.40 C

Sending temperature 23.40 C

Temperature is 23.40 C

Sending temperature 23.40 C

Temperature is 23.40 C

https://github.com/intel/compile-time-init-build
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This example demonstrates the usage of the CIB library in an event-driven system with loosely 

coupled components, where some generate events and others react to them. The wiring of pub-

lishers and subscribers happens at compile time, minimizing the memory footprint and reducing 

runtime overhead, while the declarative project configuration improves readability.

Summary
In this chapter, we saw an overview of the libraries used throughout this book – the C++ standard 

library and ETL. You also got an insight into Google’s Pigweed library and its capabilities and 

Intel’s CIB library.

In the next chapter, we will go through cross-platform development.
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Cross-Platform Development

In the previous chapters, we explored practical examples of designing and implementing software 

components for embedded systems. Each example demonstrated good software design practices 

and guided you through the implementation using modern C++ techniques.

The design practices we have followed throughout the book have helped us create portable, 

cross-platform code. Writing cross-platform code is important because it enables the reuse of 

software components across different hardware configurations. As we conclude this journey, let’s 

recap the key practices demonstrated in earlier chapters.

In this chapter, we will cover the following topics:

•	 Importance of writing portable code

•	 SOLID design principles

•	 Testability

Technical requirements
This chapter focuses on cross-platform development. The code shown here runs on multiple 

platforms, including common desktop architectures.

You can use Compiler Explorer (https://godbolt.org/) to run the examples. All source code 

is available on GitHub at https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/

tree/main/Chapter18.

https://godbolt.org/
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
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Importance of writing portable code
Hardware projects mature, evolve, and adapt to market needs and supply chain conditions.  

Between 2020 and 2022, the global semiconductor industry faced a severe supply chain crisis, 

primarily triggered by the COVID-19 pandemic and worsened by several factors. Lockdowns 

disrupted production, while soaring demand for electronics (e.g., laptops, servers) collided with 

miscalculations in the automotive sector. Carmakers initially canceled chip orders, then scrambled 

to restock as demand rebounded.

As a result, many components became scarce, overpriced, or unavailable altogether. Products had 

to adapt by replacing electronic components such as sensors, drivers, communication modules, or 

even microcontrollers. This, in turn, required firmware modifications to match the new hardware.

For well-written firmware, this adaptation was relatively straightforward and involved  

implementing only hardware-specific interfaces. For example, if a product used an accelerometer 

and needed to replace it, a well-designed firmware architecture would require just implementing 

the interface for the new component, leaving the business logic unchanged.

Cross-platform code can also run in a simulated environment on a host. In Chapter 17, we ran 

Pigweed’s demo application on a host. This was possible, thanks to Pigweed’s well-structured 

interface design, which allowed host implementations of low-level hardware interfaces. The 

same business application code can run on multiple targets, including the host, where inputs 

and outputs are simulated.

Well-structured code is easier to read, change, and maintain. Good design principles keep projects 

flexible even as requirements evolve. Next, we will examine the five SOLID principles.

SOLID design principles
The examples throughout this book are aligned with SOLID design principles, originally de-

scribed by Robert C. Martin in his 2000 paper Design Principles and Design Patterns. They serve as a  

recognized guide for writing code that remains adaptable and easy to work with over time.  

Although the SOLID principles were originally introduced in object-oriented programming, their 

focus on creating modular, maintainable, and extensible code can be applied in broader software 

design contexts. Each letter in the SOLID mnemonic acronym stands for one principle:

•	 Single Responsibility Principle (SRP): A class should have only one responsibility, giving 

it a single reason to change.
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•	 Open/Closed Principle (OCP): A class should be open for extension but closed for  

modification. A new functionality is added by extending the class through dynamic or 

static polymorphism, rather than modifying it.

•	 Liskov Substitution Principle (LSP): Derived classes should be usable in place of their 

parent classes without breaking the software’s behavior.

•	 Interface Segregation Principle (ISP): Interface classes should remain small and concise 

so that derived classes implement only methods they need.

•	 Dependency Inversion Principle (DIP): High-level modules (e.g., an accelerometer) 

should not depend on low-level modules (e.g., I2C). Both should rely on abstractions 

(interfaces) rather than concrete implementations.

Next, we’ll go through an example of designing an accelerometer interface, explain how to use 

it, and show how it aligns with SOLID principles and why that alignment matters. First, we will 

design an accelerometer interface class. The code is shown here:

#include <cstdio>

#include <cstdint>

class accelerometer {

public:

struct data {

    float x;

    float y;

    float z;

};

enum class sampling_rate {

    c_20_hz,

    c_50_hz,

    c_100_hz,

};

enum error {

      ok,

      not_supported

};

virtual error set_sampling_rate(sampling_rate) = 0;

virtual data get_data() = 0;

};
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The interface class accelerometer shown in the preceding code will be implemented by the 

adxl_345 class, which will use the i2c interface to communicate with the actual accelerometer 

hardware (the ADXL345 integrated circuit is a small accelerometer with an I2C digital interface). 

Also, we will run the code on the STM32 platform, so we will create a (stubbed) implementation 

of the i2c interface – i2c_stm32. The code is shown here:

class i2c {

public:

virtual void write() = 0;

};

class i2c_stm32 : public i2c {

public:

void write() override {

    printf("i2c::write...\r\n");

}

};

class adxl_345 : public accelerometer {

public:

adxl_345(i2c &i2c_obj) : i2c_(i2c_obj) {}

error set_sampling_rate(sampling_rate) override {

    printf("adxl_345: setting sampling rate\r\n");

    i2c_.write();

    return error::ok;

}

data get_data() override {

    return data{0.02f, 0.981f, 0.03f};

}

private:

i2c &i2c_;

};
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Next, we will design a simple tap_detection_algo class that uses an accelerometer interface to 

collect motion data and identify short, sudden movements, typically referred to as taps. The taps 

are quick spikes in acceleration that can be used as user input or trigger events in the application. 

A boilerplate for the tap-detection class is shown in the following code:

class tap_detection_algo {

public:

tap_detection_algo(accelerometer &accel) : accel_(accel) {

    auto err = accel_.set_sampling_rate(

        accelerometer::sampling_rate::c_100_hz);

    if(err == accelerometer::error::not_supported) {

    // try another sampling rate and adapt

    }

}

bool run () {

    auto accel_data = accel_.get_data();

    printf("algo: x = %.2f, y = %.2f, z = %.2f\r\n", accel_data.x, 

                                                     accel_data.y,

                                                     accel_data.z);

    // process data

    return false;

}

private:

    accelerometer &accel_;

};

Finally, we will write code for the main function that instantiates an accelerometer and runs a 

tap detection algorithm:

int main() {

    i2c_stm32 i2c1;

    adxl_345 accel(i2c1);

    

    tap_detection_algo algo(accel);

    algo.run();

    

    return 0;

}
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The preceding code is depicted in the following UML diagram:

Figure 18.1 – Tap detection algorithm UML diagram

Figure 18.1 shows the architecture of the software components we designed. The code for the 

classes shown in the UML diagram is simplified, and it serves to demonstrate the following 

SOLID principles.

Single Responsibility Principle (SRP)
The accelerometer class is an interface class with all virtual methods. Its single responsibility is 

to define an interface that will be used by higher-level components and implemented by concrete 

accelerometer implementations such as adxl_345.

The adxl_345 class implements the accelerometer interface and it’s only responsible for  

implementing communication with the ADXL 345 accelerometer over a serial interface such as 

I2C or SPI. The only reason for this class to change is bug fixing related to the communication 

with the sensor itself on the higher protocol level, not the serial bus itself.

The i2c class is an interface class with the responsibility of defining an interface for different 

implementations of the I2C peripheral, while i2c_stm32 implements this interface. The only 

reason for the concrete implementation to change is bug fixing or optimization related to the 

serial hardware peripheral.

The tap_detection_algo class takes accelerometer data and implements a tap detection algorithm 

using the collected data. The only reason to change this class is to fix or optimize the algorithm.
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Open/Closed Principle (OCP)
An interface-based design for the I2C and accelerometer components lets us extend the soft-

ware without modifying any existing code. For example, if we want to run this code on a Texas  

Instruments microcontroller, all we need to do is implement the i2c interface for that platform. 

Likewise, if we change the accelerometer sensor (e.g., to an ST LSDO6), we only have to implement 

the accelerometer interface for the new sensor.

The Liskov Substitution Principle (LSP)
The LSP was introduced by Barbara Liskov in 1987. The LSP focuses on designing robust contracts 

between base classes and their subclasses. Any client code that relies on a base class’s contract 

should work correctly when using any derived class, without unexpected behavior.

In this example, a contract violation by adxl_345 would occur if it silently fails when an  

unsupported sampling rate is requested, rather than handling it in a way that respects the base 

class contract (e.g., returning an error status).

The Interface Segregation Principle (ISP)
The ISP is about splitting large, monolithic interfaces into more focused ones so that each class 

only implements the methods it actually needs. An example of a violation of this principle would 

be having a broad Inertial Measurement Unit (IMU) interface that includes gyroscope and 

magnetometer functions, as adxl_345 is only an accelerometer and would be forced to provide 

methods it cannot meaningfully support.

The Dependency Inversion Principle (DIP)
The example code we discussed clearly demonstrates the Dependency Inversion Principle (DIP). 

By using an interface-based design, software components are cleanly decoupled:

•	 The tap_detection_algo class depends on the accelerometer interface, which is  

implemented by adxl_345

•	 The adxl_345 class depends on the i2c interface, which is implemented by i2c_stm32

SOLID principles allow us to write highly decoupled software and create reusable, hardware-in-

dependent code. Decoupled code is more flexible, and it is easier to add new features.

As an exercise, add an accelerometer data logging capability without modifying the existing classes.

Good software design also improves software testability, which we will explore next.
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Testability
Interface-based design leads to decoupled software, which improves testability. Let us analyze 

the former example and see how decoupled design helps with testing. We’ll focus on the tap 

detection algorithm.

In this example, we create a simple algorithm that detects a tap when the difference between 

the current sample and the previous sample on any axis exceeds a predefined threshold. This 

oversimplified implementation is shown in this code:

#include <cmath>

#include <algorithm>

class tap_detection_algo {

public:

tap_detection_algo(accelerometer &accel)

                    : accel_(accel), first_sample_(true) {}

bool run() {

    auto current = accel_.get_data();

    if (first_sample_) {

        prev_ = current;

        first_sample_ = false;

        return false;

    }

    bool tap = (std::fabs(current.x - prev_.x) > c_threshold) ||

           (std::fabs(current.y - prev_.y) > c_threshold) ||

               (std::fabs(current.z - prev_.z) > c_threshold);

    prev_ = current;	

    return tap;

}

private:

static constexpr float c_threshold = 0.5f;

accelerometer &accel_;

accelerometer::data prev_;

bool first_sample_ = true;

};
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The preceding code implements a simple tap detection algorithm. It accepts an accelerometer 

reference and, on each call to run(), retrieves the current sensor data. If it’s the first sample, it 

stores the value and returns false (no tap detected). On subsequent calls, it compares the current 

reading with the previous one on each axis. If the absolute difference on any axis exceeds a con-

stant threshold, it signals a tap by returning true, then updates the previous sample.

For unit testing, we’ll create a fake_accel class that simulates a sequence of accelerometer  

readings. This way, we can control the input data to check if tap_detection_algo works. The 

code for the fake_accel class is shown here:

class fake_accel : public accelerometer {

public:

fake_accel(const std::vector<data>& samples)

: samples_(samples), index_(0) {}

error set_sampling_rate(sampling_rate) override {

    return error::ok;

}

data get_data() override {

    if (index_ < samples_.size()) {

        return samples_[index_++];

    }

    return samples_.back();

}

private:

std::vector<data> samples_;

size_t index_;

};

This class, fake_accel, is a test double for the accelerometer interface. It simulates accelerometer 

data by:

•	 Accepting a vector of predefined data samples through its constructor.

•	 Implementing set_sampling_rate to always return a successful result.

•	 Returning each sample in order via get_data(), and once all samples are used, it  

repeatedly returns the last sample.
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This makes it useful for testing components that depend on accelerometer readings. Let us see 

how to use it to test the tap detection algorithm using the GoogleTest framework in the code 

shown here:

TEST(TapDetectionAlgoTest, DetectTapOnSuddenChange) {

std::vector<accelerometer::data> samples = {

    {0.0f, 1.0f, 0.0f}, // initial reading

    {0.0f, 1.0f, 0.0f}, // no change -> false

    {0.0f, 2.0f, 0.0f} // significant change

};

fake_accel fakeAccel(samples);

tap_detection_algo algo(fakeAccel);

EXPECT_FALSE(algo.run());

EXPECT_FALSE(algo.run());

EXPECT_TRUE(algo.run());

}

This test verifies that the tap detection algorithm correctly identifies a sudden change in  

accelerometer data as a tap. The test sets up a fake accelerometer with three samples:

•	 First sample: {0.0f, 1.0f, 0.0f} – used for initialization (no tap detection).

•	 Second sample: {0.0f, 1.0f, 0.0f} – no change compared to the first sample, so no 

tap is detected.

•	 Third sample: {0.0f, 2.0f, 0.0f} – a significant change on the y axis (a difference of 

1.0, which exceeds the threshold of 0.5) triggers tap detection.

The test expects the first two calls to run() to return false and the third call to return true. Thanks 

to interface-based design, we can pass a fake_accel reference to the tap_detection_algo con-

structor since fake_accel implements the accelerometer interface. We supply the fake_accel 

constructor with a vector container of samples to feed into the algorithm. This allows us to easily 

test the algorithm with a test dataset.

The full example can be found at GitHub (https://github.com/PacktPublishing/Cpp-in-

Embedded-Systems/tree/main/Chapter18). Make sure you add the GoogleTest library to  

Compiler Explorer when running it.

https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
https://github.com/PacktPublishing/Cpp-in-Embedded-Systems/tree/main/Chapter18
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Summary
In this chapter, we learned why writing portable, cross-platform code is important for embedded 

development. It allows you to easily reuse software components and adapt to hardware changes, 

and it improves testability.

You also learned about SOLID principles and how they apply to the design of software components 

in embedded systems using C++. Code readability and flexibility are some of the most important 

traits of well-designed software.

We humans read the code, and the human who reads your code may be the future you. So,  

having easy-to-read code should be a priority. Sacrifice readability and optimize for performance 

only when absolutely needed. Having flexible code allows you to adapt to changes or add new 

features easily.

With this chapter, our journey comes to an end. We began by exploring common myths about 

C++ and debunking them. From there, we covered many important aspects of modern C++ and 

learned how to apply them in embedded application development.

We explored how to use lambdas to write expressive code and took advantage of compile-time 

computation to generate lookup tables, conserving memory and processing power. We also lev-

eraged C++ type safety to implement a type-safe HAL.

Next, we learned how to apply design patterns such as Adapter, Observer, and State to solve 

typical problems in embedded systems. We explored the C++ Standard Library, ETL, Pigweed, 

and cib and learned how to use them in embedded applications.

Throughout all the examples in this book, we focused on writing readable, maintainable, and 

loosely coupled code to strengthen our software design and development skills.

I hope you enjoyed this journey and wish you happy coding!
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